These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20013912)

  • 21. Fabrication of poly(methyl methacrylate) capillary electrophoresis microchips by in situ surface polymerization.
    Xu G; Wang J; Chen Y; Zhang L; Wang D; Chen G
    Lab Chip; 2006 Jan; 6(1):145-8. PubMed ID: 16372082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface-modified poly(methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis.
    Liu J; Pan T; Woolley AT; Lee ML
    Anal Chem; 2004 Dec; 76(23):6948-55. PubMed ID: 15571346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microchip electrophoretic protein separation using electroosmotic flow induced by dynamic sodium dodecyl sulfate-coating of uncoated plastic chips.
    Nagata H; Tabuchi M; Hirano K; Baba Y
    Electrophoresis; 2005 Jun; 26(11):2247-53. PubMed ID: 15861467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell transport via electromigration in polymer-based microfluidic devices.
    Witek MA; Wei S; Vaidya B; Adams AA; Zhu L; Stryjewski W; McCarley RL; Soper SA
    Lab Chip; 2004 Oct; 4(5):464-72. PubMed ID: 15472730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly efficient dynamic modification of plastic microfluidic devices using proteins in microchip capillary electrophoresis.
    Naruishi N; Tanaka Y; Higashi T; Wakida S
    J Chromatogr A; 2006 Oct; 1130(2):169-74. PubMed ID: 16860810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution.
    Nagata H; Tabuchi M; Hirano K; Baba Y
    Electrophoresis; 2005 Jul; 26(14):2687-91. PubMed ID: 15937980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-cost fabrication of poly(methyl methacrylate) microchips using disposable gelatin gel templates.
    Chen Z; Yu Z; Chen G
    Talanta; 2010 Jun; 81(4-5):1325-30. PubMed ID: 20441902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase-changing sacrificial layer fabrication of multilayer polymer microfluidic devices.
    Fuentes HV; Woolley AT
    Anal Chem; 2008 Jan; 80(1):333-9. PubMed ID: 18031061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H; Chen Z; Zhang L; Yang P; Chen G
    J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template.
    Chen Z; Gao Y; Lin J; Su R; Xie Y
    J Chromatogr A; 2004 Jun; 1038(1-2):239-45. PubMed ID: 15233539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Channel wall coating on a poly-(methyl methacrylate) CE microchip by thermal immobilization of a cellulose derivative for size-based protein separation.
    Okada H; Kaji N; Tokeshi M; Baba Y
    Electrophoresis; 2007 Dec; 28(24):4582-9. PubMed ID: 18072224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification of a poly(methyl methacrylate) injection-molded microchip and its use for high performance analysis of DNA.
    Zhou XM; Dai ZP; Liu X; Luo Y; Wang H; Lin BC
    J Sep Sci; 2005 Feb; 28(3):225-33. PubMed ID: 15776923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple method using two-step hot embossing technique with shrinking for fabrication of cross microchannels on PMMA substrate and its application to electrophoretic separation of amino acids in functional drinks.
    Wiriyakun N; Nacapricha D; Chantiwas R
    Talanta; 2016 Dec; 161():574-582. PubMed ID: 27769450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Static adsorptive coating of poly(methyl methacrylate) microfluidic chips for extended usage in DNA separations.
    Du XG; Fang ZL
    Electrophoresis; 2005 Dec; 26(24):4625-31. PubMed ID: 16358253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chiral separations using polymeric surfactants and polyelectrolyte multilayers in open-tubular capillary electrochromatography.
    Kapnissi CP; Valle BC; Warner IM
    Anal Chem; 2003 Nov; 75(22):6097-104. PubMed ID: 14615987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis.
    Sun X; Li D; Lee ML
    Anal Chem; 2009 Aug; 81(15):6278-84. PubMed ID: 19572700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modification of poly(methyl methacrylate) microchannels for highly efficient and reproducible electrophoretic separations of double-stranded DNA.
    Lin YW; Chang HT
    J Chromatogr A; 2005 May; 1073(1-2):191-9. PubMed ID: 15909522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bulk modification of polymeric microfluidic devices.
    Wang J; Muck A; Chatrathi MP; Chen G; Mittal N; Spillman SD; Obeidat S
    Lab Chip; 2005 Feb; 5(2):226-30. PubMed ID: 15672139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-step preparation of amino-PEG modified poly(methyl methacrylate) microchips for electrophoretic separation of biomolecules.
    Kitagawa F; Kubota K; Sueyoshi K; Otsuka K
    J Pharm Biomed Anal; 2010 Dec; 53(5):1272-7. PubMed ID: 20678876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid-release reversible bonding of PMMA-based microfluidic devices with PBMA coating.
    Li Y; Xu F; Liu J; Zhang Q; Fan Y
    Biomed Microdevices; 2023 Dec; 26(1):6. PubMed ID: 38141082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.