These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20013942)

  • 1. Gene, region and pathway level analyses in whole-genome studies.
    De la Cruz O; Wen X; Ke B; Song M; Nicolae DL
    Genet Epidemiol; 2010 Apr; 34(3):222-231. PubMed ID: 20013942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RS-SNP: a random-set method for genome-wide association studies.
    D'Addabbo A; Palmieri O; Latiano A; Annese V; Mukherjee S; Ancona N
    BMC Genomics; 2011 Mar; 12():166. PubMed ID: 21450072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets.
    Xiong Q; Ancona N; Hauser ER; Mukherjee S; Furey TS
    Genome Res; 2012 Feb; 22(2):386-97. PubMed ID: 21940837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of empirical Bayes hierarchical modeling for the analysis of genome-wide association study data.
    Heron EA; O'Dushlaine C; Segurado R; Gallagher L; Gill M
    Biostatistics; 2011 Jul; 12(3):445-61. PubMed ID: 21252078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing power of genome-wide association studies by collecting additional single-nucleotide polymorphisms.
    Kostem E; Lozano JA; Eskin E
    Genetics; 2011 Jun; 188(2):449-60. PubMed ID: 21467568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FLAGS: A Flexible and Adaptive Association Test for Gene Sets Using Summary Statistics.
    Huang J; Wang K; Wei P; Liu X; Liu X; Tan K; Boerwinkle E; Potash JB; Han S
    Genetics; 2016 Mar; 202(3):919-29. PubMed ID: 26773050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of untyped SNPs: maximum likelihood and imputation methods.
    Hu YJ; Lin DY
    Genet Epidemiol; 2010 Dec; 34(8):803-15. PubMed ID: 21104886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prioritizing candidate disease genes by network-based boosting of genome-wide association data.
    Lee I; Blom UM; Wang PI; Shim JE; Marcotte EM
    Genome Res; 2011 Jul; 21(7):1109-21. PubMed ID: 21536720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies.
    Emily M
    Stat Med; 2012 Sep; 31(21):2359-73. PubMed ID: 22711278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases.
    Lin PL; Yu YW; Chung RH
    PLoS One; 2016; 11(9):e0162910. PubMed ID: 27622767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From SNPs to genes: disease association at the gene level.
    Lehne B; Lewis CM; Schlitt T
    PLoS One; 2011; 6(6):e20133. PubMed ID: 21738570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathway analysis comparison using Crohn's disease genome wide association studies.
    Ballard D; Abraham C; Cho J; Zhao H
    BMC Med Genomics; 2010 Jun; 3():25. PubMed ID: 20584322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A knowledge-based method for association studies on complex diseases.
    Nazarian A; Sichtig H; Riva A
    PLoS One; 2012; 7(9):e44162. PubMed ID: 22970175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and robust association tests for untyped SNPs in case-control studies.
    Allen AS; Satten GA; Bray SL; Dudbridge F; Epstein MP
    Hum Hered; 2010; 70(3):167-76. PubMed ID: 20689309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data.
    Kang C; Yu H; Yi GS
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S3. PubMed ID: 23566118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supervised categorical principal component analysis for genome-wide association analyses.
    Lu M; Lee HS; Hadley D; Huang JZ; Qian X
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S10. PubMed ID: 24564304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jackknife-based gene-gene interactiontests for untyped SNPs.
    Song M
    BMC Genet; 2015 Jul; 16():85. PubMed ID: 26187382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating functional annotation information in prioritizing disease associated SNPs from genome wide association studies.
    Hou L; Ma T; Zhao H
    Sci China Life Sci; 2014 Nov; 57(11):1072-9. PubMed ID: 25326070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple and fast two-locus quality control test to detect false positives due to batch effects in genome-wide association studies.
    Lee SH; Nyholt DR; Macgregor S; Henders AK; Zondervan KT; Montgomery GW; Visscher PM
    Genet Epidemiol; 2010 Dec; 34(8):854-62. PubMed ID: 21104888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.