These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
545 related articles for article (PubMed ID: 20013961)
1. Influence of gold nanoparticles of varying size in improving the lipase activity within cationic reverse micelles. Maiti S; Das D; Shome A; Das PK Chemistry; 2010 Feb; 16(6):1941-50. PubMed ID: 20013961 [TBL] [Abstract][Full Text] [Related]
2. Higher order structure of Mucor miehei lipase and micelle size in cetyltrimethylammonium bromide reverse micellar system. Naoe K; Takeuchi C; Kawagoe M; Nagayama K; Imai M J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):277-84. PubMed ID: 17169622 [TBL] [Abstract][Full Text] [Related]
3. Improved activity of enzymes in mixed cationic reverse micelles with imidazolium-based surfactants. Das D; Das D; Das PK Biochimie; 2008 May; 90(5):820-9. PubMed ID: 18067868 [TBL] [Abstract][Full Text] [Related]
4. Water-in-oil microemulsion doped with gold nanoparticle decorated single walled carbon nanotube: scaffold for enhancing lipase activity. Mandal D; Ghosh M; Maiti S; Das K; Das PK Colloids Surf B Biointerfaces; 2014 Jan; 113():442-9. PubMed ID: 24148754 [TBL] [Abstract][Full Text] [Related]
5. Graphene oxide in cetyltrimethylammonium bromide (CTAB) reverse micelle: a befitting soft nanocomposite for improving efficiency of surface-active enzymes. Das K; Maiti S; Ghosh M; Mandal D; Das PK J Colloid Interface Sci; 2013 Apr; 395():111-8. PubMed ID: 23374433 [TBL] [Abstract][Full Text] [Related]
6. Striking improvement in peroxidase activity of cytochrome c by modulating hydrophobicity of surface-functionalized gold nanoparticles within cationic reverse micelles. Maiti S; Das K; Dutta S; Das PK Chemistry; 2012 Nov; 18(47):15021-30. PubMed ID: 23018861 [TBL] [Abstract][Full Text] [Related]
7. Geometric constraints at the surfactant headgroup: effect on lipase activity in cationic reverse micelles. Mitra RN; Dasgupta A; Das D; Roy S; Debnath S; Das PK Langmuir; 2005 Dec; 21(26):12115-23. PubMed ID: 16342982 [TBL] [Abstract][Full Text] [Related]
8. Covalently functionalized single-walled carbon nanotubes at reverse micellar interface: a strategy to improve lipase activity. Ghosh M; Maiti S; Dutta S; Das D; Das PK Langmuir; 2012 Jan; 28(3):1715-24. PubMed ID: 22201417 [TBL] [Abstract][Full Text] [Related]
9. Imidazolium bromide-based ionic liquid assisted improved activity of trypsin in cationic reverse micelles. Debnath S; Das D; Dutta S; Das PK Langmuir; 2010 Mar; 26(6):4080-6. PubMed ID: 20143862 [TBL] [Abstract][Full Text] [Related]
10. Superior activity of structurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles. Das D; Das PK Langmuir; 2009 Apr; 25(8):4421-8. PubMed ID: 19245221 [TBL] [Abstract][Full Text] [Related]
11. The interaction between casein micelles and gold nanoparticles. Liu Y; Guo R J Colloid Interface Sci; 2009 Apr; 332(1):265-9. PubMed ID: 19131073 [TBL] [Abstract][Full Text] [Related]
12. Interfacial properties of cetyltrimethylammonium-coated SiO(2) nanoparticles in aqueous media as studied by using different indicator dyes. Bryleva EY; Vodolazkaya NA; McHedlov-Petrossyan NO; Samokhina LV; Matveevskaya NA; Tolmachev AV J Colloid Interface Sci; 2007 Dec; 316(2):712-22. PubMed ID: 17692863 [TBL] [Abstract][Full Text] [Related]
13. Effect of counterions on the activity of lipase in cationic water-in-oil microemulsions. Debnath S; Dasgupta A; Mitra RN; Das PK Langmuir; 2006 Oct; 22(21):8732-40. PubMed ID: 17014111 [TBL] [Abstract][Full Text] [Related]
14. Unsaturation at the surfactant head: influence on the activity of lipase and horseradish peroxidase in reverse micelles. Debnath S; Das D; Das PK Biochem Biophys Res Commun; 2007 Apr; 356(1):163-8. PubMed ID: 17349615 [TBL] [Abstract][Full Text] [Related]
16. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine. Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943 [TBL] [Abstract][Full Text] [Related]
17. Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions. Roy S; Dasgupta A; Das PK Langmuir; 2006 May; 22(10):4567-73. PubMed ID: 16649765 [TBL] [Abstract][Full Text] [Related]
18. Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer. Alkilany AM; Frey RL; Ferry JL; Murphy CJ Langmuir; 2008 Sep; 24(18):10235-9. PubMed ID: 18700748 [TBL] [Abstract][Full Text] [Related]
19. Probing the relationship between interfacial concentrations and lipase activity in cationic W/O microemulsions: a quantitative study by chemical trapping. Dasgupta A; Das D; Das PK Langmuir; 2007 Apr; 23(8):4137-43. PubMed ID: 17348698 [TBL] [Abstract][Full Text] [Related]
20. Head-group size or hydrophilicity of surfactants: the major regulator of lipase activity in cationic water-in-oil microemulsions. Das D; Roy S; Mitra RN; Dasgupta A; Das PK Chemistry; 2005 Aug; 11(17):4881-9. PubMed ID: 15977280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]