BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 20014030)

  • 1. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species.
    Chowdhury T; Chien P; Ebrahim S; Sauer RT; Baker TA
    Protein Sci; 2010 Feb; 19(2):242-54. PubMed ID: 20014030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of SspB-tail recognition by the zinc binding domain of ClpX.
    Park EY; Lee BG; Hong SB; Kim HW; Jeon H; Song HK
    J Mol Biol; 2007 Mar; 367(2):514-26. PubMed ID: 17258768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX.
    Dougan DA; Weber-Ban E; Bukau B
    Mol Cell; 2003 Aug; 12(2):373-80. PubMed ID: 14536077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX.
    Thibault G; Yudin J; Wong P; Tsitrin V; Sprangers R; Zhao R; Houry WA
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17724-9. PubMed ID: 17090685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered tethering of the SspB adaptor to the ClpXP protease causes changes in substrate delivery.
    McGinness KE; Bolon DN; Kaganovich M; Baker TA; Sauer RT
    J Biol Chem; 2007 Apr; 282(15):11465-73. PubMed ID: 17317664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study.
    Bolon DN; Wah DA; Hersch GL; Baker TA; Sauer RT
    Mol Cell; 2004 Feb; 13(3):443-9. PubMed ID: 14967151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A degradation signal recognition in prokaryotes.
    Park EY; Song HK
    J Synchrotron Radiat; 2008 May; 15(Pt 3):246-9. PubMed ID: 18421150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the RssB-Mediated Recognition and Delivery of σ
    Micevski D; Zeth K; Mulhern TD; Schuenemann VJ; Zammit JE; Truscott KN; Dougan DA
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32316259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and substrate specificity of an SspB ortholog: design implications for AAA+ adaptors.
    Chien P; Grant RA; Sauer RT; Baker TA
    Structure; 2007 Oct; 15(10):1296-305. PubMed ID: 17937918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    Osterås M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease.
    Wah DA; Levchenko I; Rieckhof GE; Bolon DN; Baker TA; Sauer RT
    Mol Cell; 2003 Aug; 12(2):355-63. PubMed ID: 14536075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags.
    Hersch GL; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12136-41. PubMed ID: 15297609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered specificity of a AAA+ protease.
    Farrell CM; Baker TA; Sauer RT
    Mol Cell; 2007 Jan; 25(1):161-6. PubMed ID: 17218279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of substrate gating and translocation into ClpP by channel residues and ClpX binding.
    Lee ME; Baker TA; Sauer RT
    J Mol Biol; 2010 Jun; 399(5):707-18. PubMed ID: 20416323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.
    Thibault G; Tsitrin Y; Davidson T; Gribun A; Houry WA
    EMBO J; 2006 Jul; 25(14):3367-76. PubMed ID: 16810315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The SspB adaptor drives structural changes in the AAA+ ClpXP protease during ssrA-tagged substrate delivery.
    Ghanbarpour A; Fei X; Baker TA; Davis JH; Sauer RT
    Proc Natl Acad Sci U S A; 2023 Feb; 120(6):e2219044120. PubMed ID: 36730206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2008 Feb; 29(4):441-50. PubMed ID: 18313382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation.
    Flynn JM; Levchenko I; Sauer RT; Baker TA
    Genes Dev; 2004 Sep; 18(18):2292-301. PubMed ID: 15371343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
    LaBreck CJ; Trebino CE; Ferreira CN; Morrison JJ; DiBiasio EC; Conti J; Camberg JL
    J Biol Chem; 2021; 296():100162. PubMed ID: 33288679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.