BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20014080)

  • 1. Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study.
    Haque E; Khan NA; Park JH; Jhung SH
    Chemistry; 2010 Jan; 16(3):1046-52. PubMed ID: 20014080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses.
    Khan NA; Haque E; Jhung SH
    Phys Chem Chem Phys; 2010 Mar; 12(11):2625-31. PubMed ID: 20200739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation?
    Jhung SH; Jin T; Hwang YK; Chang JS
    Chemistry; 2007; 13(16):4410-7. PubMed ID: 17407114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-assisted organic synthesis and transformations using benign reaction media.
    Polshettiwar V; Varma RS
    Acc Chem Res; 2008 May; 41(5):629-39. PubMed ID: 18419142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave synthesis of SAPO-11 and AlPO-11: aspects of reactor engineering.
    Gharibeh M; Tompsett GA; Conner WC; Yngvesson KS
    Chemphyschem; 2008 Dec; 9(17):2580-91. PubMed ID: 19034925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave synthesis of zeolites. 2. Effect of vessel size, precursor volume, and irradiation method.
    Panzarella B; Tompsett GA; Yngvesson KS; Conner WC
    J Phys Chem B; 2007 Nov; 111(44):12657-67. PubMed ID: 17939703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave synthesis of hybrid inorganic-organic porous materials: phase-selective and rapid crystallization.
    Jhung SH; Lee JH; Forster PM; Férey G; Cheetham AK; Chang JS
    Chemistry; 2006 Oct; 12(30):7899-905. PubMed ID: 16871506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol.
    Bilecka I; Elser P; Niederberger M
    ACS Nano; 2009 Feb; 3(2):467-77. PubMed ID: 19236087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Newman-Kwart rearrangement: a microwave kinetic study.
    Gilday JP; Lenden P; Moseley JD; Cox BG
    J Org Chem; 2008 Apr; 73(8):3130-4. PubMed ID: 18358042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted synthesis of metallic nanostructures in solution.
    Tsuji M; Hashimoto M; Nishizawa Y; Kubokawa M; Tsuji T
    Chemistry; 2005 Jan; 11(2):440-52. PubMed ID: 15515072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@H3PW12O40: selective adsorption of heavy metal ions in water analyzed with synchrotron radiation.
    Zou F; Yu R; Li R; Li W
    Chemphyschem; 2013 Aug; 14(12):2825-32. PubMed ID: 23818161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwaves in organic synthesis. Thermal and non-thermal microwave effects.
    de la Hoz A; Díaz-Ortiz A; Moreno A
    Chem Soc Rev; 2005 Feb; 34(2):164-78. PubMed ID: 15672180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-specific acceleration of a Friedel-Crafts reaction: evidence for selective heating in homogeneous solution.
    Rosana MR; Hunt J; Ferrari A; Southworth TA; Tao Y; Stiegman AE; Dudley GB
    J Org Chem; 2014 Aug; 79(16):7437-50. PubMed ID: 25050855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heating behavior and crystal growth mechanism in microwave field.
    Yang G; Kong Y; Hou W; Yan Q
    J Phys Chem B; 2005 Feb; 109(4):1371-9. PubMed ID: 16851105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies.
    Bacsa B; Horváti K; Bõsze S; Andreae F; Kappe CO
    J Org Chem; 2008 Oct; 73(19):7532-42. PubMed ID: 18729524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-assisted dry-gel conversion-a new sustainable route for the rapid synthesis of metal-organic frameworks with solvent re-use.
    Tannert N; Gökpinar S; Hastürk E; Nießing S; Janiak C
    Dalton Trans; 2018 Jul; 47(29):9850-9860. PubMed ID: 29995044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional brain heating during microwave exposure (2.06 GHz), warm-water immersion, environmental heating and exercise.
    Walters TJ; Ryan KL; Belcher JC; Doyle JM; Tehrany MR; Mason PA
    Bioelectromagnetics; 1998; 19(6):341-53. PubMed ID: 9738525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound and microwave assisted synthesis of isoindolo-1,2-diazine: a comparative study.
    Bejan V; Mantu D; Mangalagiu II
    Ultrason Sonochem; 2012 Sep; 19(5):999-1002. PubMed ID: 22464108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.