BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20014141)

  • 1. Quantification of non-specific binding of magnetic micro- and nanoparticles using cell tracking velocimetry: Implication for magnetic cell separation and detection.
    Chalmers JJ; Xiong Y; Jin X; Shao M; Tong X; Farag S; Zborowski M
    Biotechnol Bioeng; 2010 Apr; 105(6):1078-93. PubMed ID: 20014141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment and implications of a characterization method for magnetic nanoparticle using cell tracking velocimetry and magnetic susceptibility modified solutions.
    Zhang H; Moore LR; Zborowski M; Williams PS; Margel S; Chalmers JJ
    Analyst; 2005 Apr; 130(4):514-27. PubMed ID: 15776162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell tracking velocimetry as a tool for defining saturation binding of magnetically conjugated antibodies.
    Leigh DR; Steinert S; Moore LR; Chalmers JJ; Zborowski M
    Cytometry A; 2005 Aug; 66(2):103-8. PubMed ID: 15973696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study.
    Brandão D; Liébana S; Campoy S; Alegret S; Isabel Pividori M
    Talanta; 2015 Oct; 143():198-204. PubMed ID: 26078149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of eluents from separations of CD34+ cells from human cord blood using a commercial, immunomagnetic cell separation system.
    Melnik K; Nakamura M; Comella K; Lasky LC; Zborowski M; Chalmers JJ
    Biotechnol Prog; 2001; 17(5):907-16. PubMed ID: 11587583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of magnetite-doped polymeric microspheres in calibrating cell tracking velocimetry.
    Moore LR; Zborowski M; Nakamura M; McCloskey K; Gura S; Zuberi M; Margel S; Chalmers JJ
    J Biochem Biophys Methods; 2000 Jul; 44(1-2):115-30. PubMed ID: 10889282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medical applications of magnetic nanoparticles.
    Alexiou C; Jurgons R; Seliger C; Iro H
    J Nanosci Nanotechnol; 2006; 6(9-10):2762-8. PubMed ID: 17048480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis.
    Jing Y; Moore LR; Williams PS; Chalmers JJ; Farag SS; Bolwell B; Zborowski M
    Biotechnol Bioeng; 2007 Apr; 96(6):1139-54. PubMed ID: 17009321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunomagnetic Separation of Salmonella with Tailored Magnetic Micro- and Nanocarriers.
    Pividori MI
    Methods Mol Biol; 2021; 2182():51-65. PubMed ID: 32894487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic cell separation using nano-sized bacterial magnetic particles with reconstructed magnetosome membrane.
    Yoshino T; Hirabe H; Takahashi M; Kuhara M; Takeyama H; Matsunaga T
    Biotechnol Bioeng; 2008 Oct; 101(3):470-7. PubMed ID: 18421798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.
    Babinec P; Krafcík A; Babincová M; Rosenecker J
    Med Biol Eng Comput; 2010 Aug; 48(8):745-53. PubMed ID: 20517710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetoanalysis of micro/nanoparticles: a review.
    Suwa M; Watarai H
    Anal Chim Acta; 2011 Apr; 690(2):137-47. PubMed ID: 21435469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunomagnetic selection of CD34+ cells from fresh peripheral blood mononuclear cell preparations using two different separation techniques.
    Papadimitriou CA; Roots A; Koenigsmann M; Koenigsmann M; Mücke C; Oelmann E; Oberberg D; Reufi B; Thiel E; Berdel WE
    J Hematother; 1995 Dec; 4(6):539-44. PubMed ID: 8846014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in magnetically induced motion of diamagnetic, paramagnetic, and superparamagnetic microparticles detected by cell tracking velocimetry.
    Jin X; Zhao Y; Richardson A; Moore L; Williams PS; Zborowski M; Chalmers JJ
    Analyst; 2008 Dec; 133(12):1767-75. PubMed ID: 19082082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of anti-CD4 monoclonal antibody-conjugated magnetic poly(glycidyl methacrylate) particles and their application on CD4+ lymphocyte separation.
    Pimpha N; Chaleawlert-umpon S; Chruewkamlow N; Kasinrerk W
    Talanta; 2011 Mar; 84(1):89-97. PubMed ID: 21315903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel magnetophoretic-based device for magnetometry and separation of single magnetic particles and magnetized cells.
    Abedini-Nassab R; Ding X; Xie H
    Lab Chip; 2022 Feb; 22(4):738-746. PubMed ID: 35040849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic cell sorting.
    Zborowski M; Chalmers JJ
    Methods Mol Biol; 2005; 295():291-300. PubMed ID: 15596904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of functional pure mitochondria by superparamagnetic microbeads.
    Hornig-Do HT; Günther G; Bust M; Lehnartz P; Bosio A; Wiesner RJ
    Anal Biochem; 2009 Jun; 389(1):1-5. PubMed ID: 19285029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunomagnetic method of CD34(+) cell separation.
    Markiewicz M; Kamińska H; Wojnar J; Jagoda K; Krawczyk M; Hołowiecki J
    Transplant Proc; 1996 Dec; 28(6):3526-7. PubMed ID: 8962370
    [No Abstract]   [Full Text] [Related]  

  • 20. Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device.
    Zeng L; Chen X; Du J; Yu Z; Zhang R; Zhang Y; Yang H
    Nanoscale; 2021 Feb; 13(7):4029-4037. PubMed ID: 33533377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.