BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20014758)

  • 1. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins.
    Li Y; Shibahara A; Matsuo Y; Tanaka T; Kouno I
    J Nat Prod; 2010 Jan; 73(1):33-9. PubMed ID: 20014758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in the synthesis and degradation of theaflavin.
    Tanaka T; Mine C; Inoue K; Matsuda M; Kouno I
    J Agric Food Chem; 2002 Mar; 50(7):2142-8. PubMed ID: 11902970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two types of oxidative dimerization of the black tea polyphenol theaflavin.
    Tanaka T; Inoue K; Betsumiya Y; Mine C; Kouno I
    J Agric Food Chem; 2001 Dec; 49(12):5785-9. PubMed ID: 11743764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New degradation mechanism of black tea pigment theaflavin involving condensation with epigallocatechin-3-O-gallate.
    Tanaka T; Yasumatsu M; Hirotani M; Matsuo Y; Li N; Zhu HT; Saito Y; Ishimaru K; Zhang YJ
    Food Chem; 2022 Feb; 370():131326. PubMed ID: 34656020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Synthesis of Theaflavin 3-Gallate by a Tyrosinase-Catalyzed Reaction with (-)-Epicatechin and (-)-Epigallocatechin Gallate in a 1-Octanol/Buffer Biphasic System.
    Narai-Kanayama A; Uekusa Y; Kiuchi F; Nakayama T
    J Agric Food Chem; 2018 Dec; 66(51):13464-13472. PubMed ID: 30482011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment.
    Yu Z; Liao Y; Zeng L; Dong F; Watanabe N; Yang Z
    Food Res Int; 2020 Mar; 129():108842. PubMed ID: 32036878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of iron(III) with theaflavin: complexation and oxidative products.
    O'Coinceanainn M; Bonnely S; Baderschneider B; Hynes MJ
    J Inorg Biochem; 2004 Apr; 98(4):657-63. PubMed ID: 15041246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel black tea pigment and two new oxidation products of epigallocatechin-3-O-gallate.
    Tanaka T; Matsuo Y; Kouno I
    J Agric Food Chem; 2005 Sep; 53(19):7571-8. PubMed ID: 16159188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of black tea polyphenol, theaflavin, and identification of theanaphthoquinone as its major radical reaction product.
    Jhoo JW; Lo CY; Li S; Sang S; Ang CY; Heinze TM; Ho CT
    J Agric Food Chem; 2005 Jul; 53(15):6146-50. PubMed ID: 16029009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase of theaflavin gallates and thearubigins by acceleration of catechin oxidation in a new fermented tea product obtained by the tea-rolling processing of loquat ( Eriobotrya japonica ) and green tea leaves.
    Tanaka T; Miyata Y; Tamaya K; Kusano R; Matsuo Y; Tamaru S; Tanaka K; Matsui T; Maeda M; Kouno I
    J Agric Food Chem; 2009 Jul; 57(13):5816-22. PubMed ID: 19507893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theaflavins in black tea and catechins in green tea are equally effective antioxidants.
    Leung LK; Su Y; Chen R; Zhang Z; Huang Y; Chen ZY
    J Nutr; 2001 Sep; 131(9):2248-51. PubMed ID: 11533262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural identification of theaflavin trigallate and tetragallate from black tea using liquid chromatography/electrospray ionization tandem mass spectrometry.
    Chen H; Shurlknight K; Leung T; Sang S
    J Agric Food Chem; 2012 Oct; 60(43):10850-7. PubMed ID: 23066878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of processes in black tea manufacture through model fermentation (oxidation) experiments.
    Stodt UW; Blauth N; Niemann S; Stark J; Pawar V; Jayaraman S; Koek J; Engelhardt UH
    J Agric Food Chem; 2014 Aug; 62(31):7854-61. PubMed ID: 25051300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The enzymatic synthesis of theaflavin-3-gallate oxidation product and its determination.
    Jian J; An J; Gao Z; Zeng L; Luo W; Ding Y
    Talanta; 2024 Aug; 276():126239. PubMed ID: 38781912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities.
    Sirk TW; Friedman M; Brown EF
    J Agric Food Chem; 2011 Apr; 59(8):3780-7. PubMed ID: 21417313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism.
    Pereira-Caro G; Moreno-Rojas JM; Brindani N; Del Rio D; Lean MEJ; Hara Y; Crozier A
    J Agric Food Chem; 2017 Jul; 65(26):5365-5374. PubMed ID: 28595385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New dibenzotropolone derivatives characterized from black tea using LC/MS/MS.
    Sang S; Tian S; Stark RE; Yang CS; Ho CT
    Bioorg Med Chem; 2004 Jun; 12(11):3009-17. PubMed ID: 15142559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: evidence by tandem LC-MS.
    Kuhnert N; Clifford MN; Müller A
    Food Funct; 2010 Nov; 1(2):180-99. PubMed ID: 21776470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altering the phenolics profile of a green tea leaves extract using exogenous oxidases.
    Verloop AJ; Gruppen H; Bisschop R; Vincken JP
    Food Chem; 2016 Apr; 196():1197-206. PubMed ID: 26593607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins.
    Subramanian N; Venkatesh P; Ganguli S; Sinkar VP
    J Agric Food Chem; 1999 Jul; 47(7):2571-8. PubMed ID: 10552528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.