These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 20014758)
1. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins. Li Y; Shibahara A; Matsuo Y; Tanaka T; Kouno I J Nat Prod; 2010 Jan; 73(1):33-9. PubMed ID: 20014758 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in the synthesis and degradation of theaflavin. Tanaka T; Mine C; Inoue K; Matsuda M; Kouno I J Agric Food Chem; 2002 Mar; 50(7):2142-8. PubMed ID: 11902970 [TBL] [Abstract][Full Text] [Related]
3. Two types of oxidative dimerization of the black tea polyphenol theaflavin. Tanaka T; Inoue K; Betsumiya Y; Mine C; Kouno I J Agric Food Chem; 2001 Dec; 49(12):5785-9. PubMed ID: 11743764 [TBL] [Abstract][Full Text] [Related]
4. New degradation mechanism of black tea pigment theaflavin involving condensation with epigallocatechin-3-O-gallate. Tanaka T; Yasumatsu M; Hirotani M; Matsuo Y; Li N; Zhu HT; Saito Y; Ishimaru K; Zhang YJ Food Chem; 2022 Feb; 370():131326. PubMed ID: 34656020 [TBL] [Abstract][Full Text] [Related]
5. Efficient Synthesis of Theaflavin 3-Gallate by a Tyrosinase-Catalyzed Reaction with (-)-Epicatechin and (-)-Epigallocatechin Gallate in a 1-Octanol/Buffer Biphasic System. Narai-Kanayama A; Uekusa Y; Kiuchi F; Nakayama T J Agric Food Chem; 2018 Dec; 66(51):13464-13472. PubMed ID: 30482011 [TBL] [Abstract][Full Text] [Related]
6. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment. Yu Z; Liao Y; Zeng L; Dong F; Watanabe N; Yang Z Food Res Int; 2020 Mar; 129():108842. PubMed ID: 32036878 [TBL] [Abstract][Full Text] [Related]
7. Reaction of iron(III) with theaflavin: complexation and oxidative products. O'Coinceanainn M; Bonnely S; Baderschneider B; Hynes MJ J Inorg Biochem; 2004 Apr; 98(4):657-63. PubMed ID: 15041246 [TBL] [Abstract][Full Text] [Related]
8. A novel black tea pigment and two new oxidation products of epigallocatechin-3-O-gallate. Tanaka T; Matsuo Y; Kouno I J Agric Food Chem; 2005 Sep; 53(19):7571-8. PubMed ID: 16159188 [TBL] [Abstract][Full Text] [Related]
9. Stability of black tea polyphenol, theaflavin, and identification of theanaphthoquinone as its major radical reaction product. Jhoo JW; Lo CY; Li S; Sang S; Ang CY; Heinze TM; Ho CT J Agric Food Chem; 2005 Jul; 53(15):6146-50. PubMed ID: 16029009 [TBL] [Abstract][Full Text] [Related]
10. Increase of theaflavin gallates and thearubigins by acceleration of catechin oxidation in a new fermented tea product obtained by the tea-rolling processing of loquat ( Eriobotrya japonica ) and green tea leaves. Tanaka T; Miyata Y; Tamaya K; Kusano R; Matsuo Y; Tamaru S; Tanaka K; Matsui T; Maeda M; Kouno I J Agric Food Chem; 2009 Jul; 57(13):5816-22. PubMed ID: 19507893 [TBL] [Abstract][Full Text] [Related]
11. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. Leung LK; Su Y; Chen R; Zhang Z; Huang Y; Chen ZY J Nutr; 2001 Sep; 131(9):2248-51. PubMed ID: 11533262 [TBL] [Abstract][Full Text] [Related]
12. Structural identification of theaflavin trigallate and tetragallate from black tea using liquid chromatography/electrospray ionization tandem mass spectrometry. Chen H; Shurlknight K; Leung T; Sang S J Agric Food Chem; 2012 Oct; 60(43):10850-7. PubMed ID: 23066878 [TBL] [Abstract][Full Text] [Related]
13. Investigation of processes in black tea manufacture through model fermentation (oxidation) experiments. Stodt UW; Blauth N; Niemann S; Stark J; Pawar V; Jayaraman S; Koek J; Engelhardt UH J Agric Food Chem; 2014 Aug; 62(31):7854-61. PubMed ID: 25051300 [TBL] [Abstract][Full Text] [Related]
14. The enzymatic synthesis of theaflavin-3-gallate oxidation product and its determination. Jian J; An J; Gao Z; Zeng L; Luo W; Ding Y Talanta; 2024 Aug; 276():126239. PubMed ID: 38781912 [TBL] [Abstract][Full Text] [Related]
15. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities. Sirk TW; Friedman M; Brown EF J Agric Food Chem; 2011 Apr; 59(8):3780-7. PubMed ID: 21417313 [TBL] [Abstract][Full Text] [Related]
16. Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism. Pereira-Caro G; Moreno-Rojas JM; Brindani N; Del Rio D; Lean MEJ; Hara Y; Crozier A J Agric Food Chem; 2017 Jul; 65(26):5365-5374. PubMed ID: 28595385 [TBL] [Abstract][Full Text] [Related]
17. New dibenzotropolone derivatives characterized from black tea using LC/MS/MS. Sang S; Tian S; Stark RE; Yang CS; Ho CT Bioorg Med Chem; 2004 Jun; 12(11):3009-17. PubMed ID: 15142559 [TBL] [Abstract][Full Text] [Related]
18. Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: evidence by tandem LC-MS. Kuhnert N; Clifford MN; Müller A Food Funct; 2010 Nov; 1(2):180-99. PubMed ID: 21776470 [TBL] [Abstract][Full Text] [Related]
19. Altering the phenolics profile of a green tea leaves extract using exogenous oxidases. Verloop AJ; Gruppen H; Bisschop R; Vincken JP Food Chem; 2016 Apr; 196():1197-206. PubMed ID: 26593607 [TBL] [Abstract][Full Text] [Related]
20. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. Subramanian N; Venkatesh P; Ganguli S; Sinkar VP J Agric Food Chem; 1999 Jul; 47(7):2571-8. PubMed ID: 10552528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]