BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20015022)

  • 1. Efficient growth inhibition of human osteosarcoma cells using a peptide derived from the MDM-2-binding site of p53.
    Ito R; Kanno H; Takahashi A; Matsumoto R; Kobayashi N; Yoshida T; Saito T
    Protein Pept Lett; 2010 May; 17(5):610-5. PubMed ID: 20015022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling.
    Lengner CJ; Steinman HA; Gagnon J; Smith TW; Henderson JE; Kream BE; Stein GS; Lian JB; Jones SN
    J Cell Biol; 2006 Mar; 172(6):909-21. PubMed ID: 16533949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorinated indole-based MDM2 antagonist selectively inhibits the growth of p53
    Skalniak L; Twarda-Clapa A; Neochoritis CG; Surmiak E; Machula M; Wisniewska A; Labuzek B; Ali AM; Krzanik S; Dubin G; Groves M; Dömling A; Holak TA
    FEBS J; 2019 Apr; 286(7):1360-1374. PubMed ID: 30715803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mRNA display selection of an optimized MDM2-binding peptide that potently inhibits MDM2-p53 interaction.
    Shiheido H; Takashima H; Doi N; Yanagawa H
    PLoS One; 2011 Mar; 6(3):e17898. PubMed ID: 21423613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interferonalpha enhances etoposide-induced apoptosis in human osteosarcoma U2OS cells by a p53-dependent pathway.
    Yuan XW; Zhu XF; Liang SG; Fan Q; Chen ZX; Huang XF; Sheng PY; He AS; Yang ZB; Deng R; Feng GK; Liao WM
    Life Sci; 2008 Feb; 82(7-8):393-401. PubMed ID: 18191951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of p53 by scaffold-stabilised expression of Mdm2-binding peptides: visualisation of reporter gene induction at the single-cell level.
    Karlsson GB; Jensen A; Stevenson LF; Woods YL; Lane DP; Sørensen MS
    Br J Cancer; 2004 Oct; 91(8):1488-94. PubMed ID: 15381928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of specificity of MDM2 for the activation domains of p53 and p65: proline27 disrupts the MDM2-binding motif of p53.
    Zondlo SC; Lee AE; Zondlo NJ
    Biochemistry; 2006 Oct; 45(39):11945-57. PubMed ID: 17002294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo.
    Midgley CA; Desterro JM; Saville MK; Howard S; Sparks A; Hay RT; Lane DP
    Oncogene; 2000 May; 19(19):2312-23. PubMed ID: 10822382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel recombinant immuno-tBid with a furin site effectively suppresses the growth of HER2-positive osteosarcoma cells in vitro.
    Shan LQ; Ma S; Qiu XC; Wang T; Yu SB; Ma BA; Zhou Y; Fan QY; Yang AG
    Oncol Rep; 2011 Feb; 25(2):325-31. PubMed ID: 21152867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-genotoxic activation of p53 through the RPL11-dependent ribosomal stress pathway.
    Morgado-Palacin L; Llanos S; Urbano-Cuadrado M; Blanco-Aparicio C; Megias D; Pastor J; Serrano M
    Carcinogenesis; 2014 Dec; 35(12):2822-30. PubMed ID: 25344835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. d-Amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions.
    Li X; Liu C; Chen S; Hu H; Su J; Zou Y
    Bioorg Med Chem Lett; 2017 Oct; 27(20):4678-4681. PubMed ID: 28916339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a p53 target, CD137L, that mediates growth suppression and immune response of osteosarcoma cells.
    Tsuda Y; Tanikawa C; Miyamoto T; Hirata M; Yodsurang V; Zhang YZ; Imoto S; Yamaguchi R; Miyano S; Takayanagi H; Kawano H; Nakagawa H; Tanaka S; Matsuda K
    Sci Rep; 2017 Sep; 7(1):10739. PubMed ID: 28878391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fusion Protein of the p53 Transaction Domain and the p53-Binding Domain of the Oncoprotein MdmX as an Efficient System for High-Throughput Screening of MdmX Inhibitors.
    Chen R; Zhou J; Qin L; Chen Y; Huang Y; Liu H; Su Z
    Biochemistry; 2017 Jun; 56(25):3273-3282. PubMed ID: 28581721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance.
    Walia MK; Ho PM; Taylor S; Ng AJ; Gupte A; Chalk AM; Zannettino AC; Martin TJ; Walkley CR
    Elife; 2016 Apr; 5():. PubMed ID: 27070462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop.
    Lu X; Ma O; Nguyen TA; Jones SN; Oren M; Donehower LA
    Cancer Cell; 2007 Oct; 12(4):342-54. PubMed ID: 17936559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function.
    Lau LM; Nugent JK; Zhao X; Irwin MS
    Oncogene; 2008 Feb; 27(7):997-1003. PubMed ID: 17700533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy.
    Shin JS; Ha JH; Chi SW
    Biochem Biophys Res Commun; 2014 Jan; 443(3):882-7. PubMed ID: 24342622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Alterations of MDM2 and p53 genes in bone tumors].
    Zhou X; Gao L; Zhe X
    Zhonghua Bing Li Xue Za Zhi; 1997 Oct; 26(5):270-2. PubMed ID: 10374333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression.
    Liu M; Wang D; Li N
    Biochem Biophys Res Commun; 2016 Apr; 473(1):168-173. PubMed ID: 27012205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX.
    Hu B; Gilkes DM; Chen J
    Cancer Res; 2007 Sep; 67(18):8810-7. PubMed ID: 17875722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.