These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 20015222)
41. Denatured ethanol release into gasoline residuals, Part 2: fate and transport. Freitas JG; Barker JF J Contam Hydrol; 2013 May; 148():79-91. PubMed ID: 23375213 [TBL] [Abstract][Full Text] [Related]
42. Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume. Fahrenfeld N; Cozzarelli IM; Bailey Z; Pruden A Microb Ecol; 2014 Oct; 68(3):453-62. PubMed ID: 24760171 [TBL] [Abstract][Full Text] [Related]
43. A study of natural attenuation processes involved in a microcosm model of a crude oil-impacted wetland sediment in the Niger Delta. Abu GO; Dike PO Bioresour Technol; 2008 Jul; 99(11):4761-7. PubMed ID: 17988860 [TBL] [Abstract][Full Text] [Related]
44. Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site. Gidarakos E; Aivalioti M J Hazard Mater; 2007 Nov; 149(3):574-81. PubMed ID: 17709182 [TBL] [Abstract][Full Text] [Related]
45. Oil spill in the Rio de la Plata estuary, Argentina: 2-hydrocarbon disappearance rates in sediments and soils. Colombo JC; Barreda A; Bilos C; Cappelletti N; Migoya MC; Skorupka C Environ Pollut; 2005 Mar; 134(2):267-76. PubMed ID: 15589654 [TBL] [Abstract][Full Text] [Related]
46. Does phosphate enhance the natural attenuation of crude oil in groundwater under defined redox conditions? Ponsin V; Mouloubou OR; Prudent P; Höhener P J Contam Hydrol; 2014 Nov; 169():4-18. PubMed ID: 24795042 [TBL] [Abstract][Full Text] [Related]
47. Biodegradability of legacy crude oil contamination in Gulf War damaged groundwater wells in Northern Kuwait. Bruckberger MC; Morgan MJ; Walsh T; Bastow TP; Prommer H; Mukhopadhyay A; Kaksonen AH; Davis G; Puzon GJ Biodegradation; 2019 Feb; 30(1):71-85. PubMed ID: 30729339 [TBL] [Abstract][Full Text] [Related]
48. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale. Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908 [TBL] [Abstract][Full Text] [Related]
49. Passive soil gas technique for investigating soil and groundwater plume emanating from volatile organic hydrocarbon at Bazian oil refinery site. Hamamin DF Sci Total Environ; 2018 May; 622-623():1485-1498. PubMed ID: 29890613 [TBL] [Abstract][Full Text] [Related]
50. A coupled simulation-optimization approach for groundwater remediation design under uncertainty: an application to a petroleum-contaminated site. He L; Huang GH; Lu HW Environ Pollut; 2009; 157(8-9):2485-92. PubMed ID: 19359077 [TBL] [Abstract][Full Text] [Related]
51. Sulfur analyses as tracers of microbial degradation of hydrocarbons in the capillary fringe. Van Stempvoort DR; Kwong YT J Contam Hydrol; 2010 May; 114(1-4):1-17. PubMed ID: 20227785 [TBL] [Abstract][Full Text] [Related]
52. Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer. Spence MJ; Bottrell SH; Thornton SF; Richnow HH; Spence KH J Contam Hydrol; 2005 Sep; 79(1-2):67-88. PubMed ID: 16076511 [TBL] [Abstract][Full Text] [Related]
53. Comparison of field-observed and model-predicted plume trends at fuel-contaminated sites: implications for natural attenuation rates. Jeong SW; Kampbell DH; An YJ; Henry BM J Environ Monit; 2005 Nov; 7(11):1099-104. PubMed ID: 16252060 [TBL] [Abstract][Full Text] [Related]
54. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses. Peter A; Steinbach A; Liedl R; Ptak T; Michaelis W; Teutsch G J Contam Hydrol; 2004 Jul; 71(1-4):127-54. PubMed ID: 15145565 [TBL] [Abstract][Full Text] [Related]
55. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Camilli R; Reddy CM; Yoerger DR; Van Mooy BA; Jakuba MV; Kinsey JC; McIntyre CP; Sylva SP; Maloney JV Science; 2010 Oct; 330(6001):201-4. PubMed ID: 20724584 [TBL] [Abstract][Full Text] [Related]
56. Modelling of physical and reactive processes during biodegradation of a hydrocarbon plume under transient groundwater flow conditions. Prommer H; Barry DA; Davis GB J Contam Hydrol; 2002 Nov; 59(1-2):113-31. PubMed ID: 12683642 [TBL] [Abstract][Full Text] [Related]
57. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation. Schreiber ME; Carey GR; Feinstein DT; Bahr JM J Contam Hydrol; 2004 Sep; 73(1-4):99-127. PubMed ID: 15336791 [TBL] [Abstract][Full Text] [Related]
58. Use of surfactants to improve the biological degradation of petroleum hydrocarbons in a field site study. Martienssen M; Schirmer M Environ Technol; 2007 May; 28(5):573-82. PubMed ID: 17615966 [TBL] [Abstract][Full Text] [Related]
59. Biodegradation of petroleum products in experimental plots in Antarctic marine sediments is location dependent. Powell SM; Harvey PM; Stark JS; Snape I; Riddle MJ Mar Pollut Bull; 2007 Apr; 54(4):434-40. PubMed ID: 17222431 [TBL] [Abstract][Full Text] [Related]
60. Comparison of surficial CO2 efflux to other measures of subsurface crude oil degradation. Warren E; Sihota NJ; Hostettler FD; Bekins BA J Contam Hydrol; 2014 Aug; 164():275-84. PubMed ID: 25038543 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]