BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

617 related articles for article (PubMed ID: 20015538)

  • 21. Sorption and dissipation of aged metolachlor residues in eroded and rehabilitated soils.
    Cabrera A; Papiernik SK; Koskinen WC; Rice PJ
    Pest Manag Sci; 2012 Sep; 68(9):1272-7. PubMed ID: 22517778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):393-403. PubMed ID: 12369758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of sewage amendment on the dissipation of terbuthylazine, its degradation compound desethyl-terbuthylazine, and S-metolachlor in a field study.
    Carretta L; Cardinali A; Zanin G; Masin R
    J Environ Sci Health B; 2019; 54(3):187-195. PubMed ID: 30601689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissipation of mecoprop-P, isoproturon, bentazon and S-metolachlor in heavy metal contaminated acidic and calcareous soil before and after EDTA-based remediation.
    Gluhar S; Kaurin A; Grubar T; Prosen H; Lestan D
    Chemosphere; 2019 Dec; 237():124513. PubMed ID: 31401429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of chlorpyrifos, fenamiphos, and chlorothalonil alone and in combination and their effects on soil microbial activity.
    Singh BK; Walker A; Wright DJ
    Environ Toxicol Chem; 2002 Dec; 21(12):2600-5. PubMed ID: 12463554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accumulation and decay of chlorothalonil and selected metabolites in surface soil following foliar application to peanuts.
    Potter TL; Wauchope RD; Culbreath AK
    Environ Sci Technol; 2001 Jul; 35(13):2634-9. PubMed ID: 11452585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of metolachlor and diuron leaching in a tropical soil using undisturbed soil columns under laboratory conditions.
    Dores EF; De Souza L; Villa RD; Pinto AA
    J Environ Sci Health B; 2013; 48(2):114-21. PubMed ID: 23305279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Previous degradation study of two herbicides to simulate their fate in a sandy loam soil: Effect of the temperature and the organic amendments.
    Marín-Benito JM; Carpio MJ; Sánchez-Martín MJ; Rodríguez-Cruz MS
    Sci Total Environ; 2019 Feb; 653():1301-1310. PubMed ID: 30759570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of oiled and de-oiled olive mill waste amendments on the sorption, leaching, and persistence of S-metolachlor in a calcareous clay soil.
    Peña D; Albarrán Á; López-Piñeiro A; Rato-Nunes JM; Sánchez-Llerena J; Becerra D
    J Environ Sci Health B; 2013; 48(9):767-75. PubMed ID: 23688227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption, desorption and dissipation of metolachlor in surface and subsurface soils.
    Si Y; Takagi K; Iwasaki A; Zhou D
    Pest Manag Sci; 2009 Sep; 65(9):956-62. PubMed ID: 19441005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of different rates of spent mushroom substrate on the dissipation and bioavailability of cymoxanil and tebuconazole in an agricultural soil.
    Álvarez-Martín A; Sánchez-Martín MJ; Pose-Juan E; Rodríguez-Cruz MS
    Sci Total Environ; 2016 Apr; 550():495-503. PubMed ID: 26845185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accumulation of chlorothalonil successively applied to soil and its effect on microbial activity in soil.
    Wu X; Cheng L; Cao Z; Yu Y
    Ecotoxicol Environ Saf; 2012 Jul; 81():65-9. PubMed ID: 22571947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of two organic amendments to modify the environmental fate of S-metolachlor in agricultural soils.
    Marín-Benito JM; Herrero-Hernández E; Ordax JM; Sánchez-Martín MJ; Rodríguez-Cruz MS
    Environ Res; 2021 Apr; 195():110871. PubMed ID: 33581091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of metolachlor mineralizing bacteria in aerobic and anaerobic soils using DNA-stable isotope probing.
    Kanissery RG; Welsh A; Gomez A; Connor L; Sims GK
    Biodegradation; 2018 Apr; 29(2):117-128. PubMed ID: 29285669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of grasses on herbicide fate in the soil column: infiltration of runoff, movement, and degradation.
    Belden JB; Coats JR
    Environ Toxicol Chem; 2004 Sep; 23(9):2251-8. PubMed ID: 15379004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mineralisation of atrazine, metolachlor and their respective metabolites in vegetated filter strip and cultivated soil.
    Krutz LJ; Gentry TJ; Senseman SA; Pepper IL; Tierney DP
    Pest Manag Sci; 2006 Jun; 62(6):505-14. PubMed ID: 16612813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of redox conditions on metolachlor and metribuzin degradation in Mississippi flood plain soils.
    Mulbach CK; Porthouse JD; Jugsujinda A; DeLaune RD; Johnson AB
    J Environ Sci Health B; 2000 Nov; 35(6):689-704. PubMed ID: 11069013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduced surface runoff losses of metolachlor in narrow-row compared to wide-row soybean.
    Krutz LJ; Koger CH; Locke MA; Steinriede RW
    J Environ Qual; 2007; 36(5):1331-7. PubMed ID: 17636295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii.
    Munoz A; Koskinen WC; Cox L; Sadowsky MJ
    J Agric Food Chem; 2011 Jan; 59(2):619-27. PubMed ID: 21190381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil.
    Aga DS; Thurman EM
    Environ Sci Technol; 2001 Jun; 35(12):2455-60. PubMed ID: 11432548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.