BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20015865)

  • 21. Sensitization of tumor cells to Apo2 ligand/TRAIL-induced apoptosis by inhibition of casein kinase II.
    Ravi R; Bedi A
    Cancer Res; 2002 Aug; 62(15):4180-5. PubMed ID: 12154014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes.
    Chen X; Shen B; Xia L; Khaletzkiy A; Chu D; Wong JY; Li JJ
    Cancer Res; 2002 Feb; 62(4):1213-21. PubMed ID: 11861406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induction of p53-regulated genes in lung cancer cells: implications of the mechanism for adenoviral p53-mediated apoptosis.
    Gu J; Zhang L; Swisher SG; Liu J; Roth JA; Fang B
    Oncogene; 2004 Feb; 23(6):1300-7. PubMed ID: 14676844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional activation of TRADD mediates p53-independent radiation-induced apoptosis of glioma cells.
    Yount GL; Afshar G; Ries S; Korn M; Shalev N; Basila D; McCormick F; Haas-Kogan DA
    Oncogene; 2001 May; 20(22):2826-35. PubMed ID: 11420694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CCNU-dependent potentiation of TRAIL/Apo2L-induced apoptosis in human glioma cells is p53-independent but may involve enhanced cytochrome c release.
    Röhn TA; Wagenknecht B; Roth W; Naumann U; Gulbins E; Krammer PH; Walczak H; Weller M
    Oncogene; 2001 Jul; 20(31):4128-37. PubMed ID: 11464279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of nuclear factor-kappaB activation confers sensitivity to tumor necrosis factor-alpha by impairment of cell cycle progression in human glioma cells.
    Otsuka G; Nagaya T; Saito K; Mizuno M; Yoshida J; Seo H
    Cancer Res; 1999 Sep; 59(17):4446-52. PubMed ID: 10485496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microarray analysis in a cell death resistant glioma cell line to identify signaling pathways and novel genes controlling resistance and malignancy.
    Seznec J; Naumann U
    Cancers (Basel); 2011 Jun; 3(3):2827-43. PubMed ID: 24212935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockdown of stomatin-like protein 2 (STOML2) reduces the invasive ability of glioma cells through inhibition of the NF-κB/MMP-9 pathway.
    Song L; Liu L; Wu Z; Lin C; Dai T; Yu C; Wang X; Wu J; Li M; Li J
    J Pathol; 2012 Feb; 226(3):534-43. PubMed ID: 21960069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of nuclear factor-kappaB is tumor promoting but does not substitute for loss of p53.
    Ryan KM; O'Prey J; Vousden KH
    Cancer Res; 2004 Jul; 64(13):4415-8. PubMed ID: 15231649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis.
    Lambert JM; Moshfegh A; Hainaut P; Wiman KG; Bykov VJ
    Oncogene; 2010 Mar; 29(9):1329-38. PubMed ID: 19946333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. D4S234E, a novel p53-responsive gene, induces apoptosis in response to DNA damage.
    Kudoh T; Kimura J; Lu ZG; Miki Y; Yoshida K
    Exp Cell Res; 2010 Oct; 316(17):2849-58. PubMed ID: 20599942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of cytochrome C oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death.
    Wanka C; Brucker DP; Bähr O; Ronellenfitsch M; Weller M; Steinbach JP; Rieger J
    Oncogene; 2012 Aug; 31(33):3764-76. PubMed ID: 22120717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential microRNA therapies targeting Ras, NFkappaB and p53 signaling.
    Kasinski AL; Slack FJ
    Curr Opin Mol Ther; 2010 Apr; 12(2):147-57. PubMed ID: 20373258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1.
    Albertoni M; Shaw PH; Nozaki M; Godard S; Tenan M; Hamou MF; Fairlie DW; Breit SN; Paralkar VM; de Tribolet N; Van Meir EG; Hegi ME
    Oncogene; 2002 Jun; 21(27):4212-9. PubMed ID: 12082608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction between p53 and p16 expressed by adenoviral vectors in human malignant glioma cell lines.
    Kim SK; Wang KC; Cho BK; Chung HT; Kim YY; Lim SY; Lee CT; Kim HJ
    J Neurosurg; 2002 Jul; 97(1):143-50. PubMed ID: 12134905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of an artificially selected GS-NS0 variant with increased resistance to apoptosis.
    Browne SM; Al-Rubeai M
    Biotechnol Bioeng; 2011 Apr; 108(4):880-92. PubMed ID: 21404261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The expression of p53-regulated genes in human cultured lymphoblastoid TSCE5 and WTK1 cell lines during spaceflight.
    Takahashi A; Suzuki H; Omori K; Seki M; Hashizume T; Shimazu T; Ishioka N; Ohnishi T
    Int J Radiat Biol; 2010 Aug; 86(8):669-81. PubMed ID: 20673130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CD30-induced up-regulation of the inhibitor of apoptosis genes cIAP1 and cIAP2 in anaplastic large cell lymphoma cells.
    Hübinger G; Schneider C; Stöhr D; Ruff H; Kirchner D; Schwänen C; Schmid M; Bergmann L; Müller E
    Exp Hematol; 2004 Apr; 32(4):382-9. PubMed ID: 15050749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological and molecular characterization of an ECV-304-derived cell line resistant to p53-mediated apoptosis.
    Maxwell SA; Davis GE
    Apoptosis; 2000 Jun; 5(3):277-90. PubMed ID: 11225849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.