BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 20015870)

  • 1. Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice.
    Takamatsu S; Antonopoulos A; Ohtsubo K; Ditto D; Chiba Y; Le DT; Morris HR; Haslam SM; Dell A; Marth JD; Taniguchi N
    Glycobiology; 2010 Jan; 20(4):485-97. PubMed ID: 20015870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of differential glycoprotein preferences of N-acetylglucosaminyltransferase-IV isozymes a and b.
    Osada N; Nagae M; Nakano M; Hirata T; Kizuka Y
    J Biol Chem; 2022 Sep; 298(9):102400. PubMed ID: 35988645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic properties and substrate specificities of two recombinant human N-acetylglucosaminyltransferase-IV isozymes.
    Oguri S; Yoshida A; Minowa MT; Takeuchi M
    Glycoconj J; 2006 Nov; 23(7-8):473-80. PubMed ID: 17006639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted genetic inactivation of N-acetylglucosaminyltransferase-IVa impairs insulin secretion from pancreatic beta cells and evokes type 2 diabetes.
    Ohtsubo K
    Methods Enzymol; 2010; 479():205-22. PubMed ID: 20816168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of a lectin domain that regulates enzyme activity in mouse N-acetylglucosaminyltransferase-IVa (MGAT4A).
    Nagae M; Hirata T; Tateno H; Mishra SK; Manabe N; Osada N; Tokoro Y; Yamaguchi Y; Doerksen RJ; Shimizu T; Kizuka Y
    Commun Biol; 2022 Jul; 5(1):695. PubMed ID: 35854001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure and sugar-binding ability of the C-terminal domain of N-acetylglucosaminyltransferase IV establish a new carbohydrate-binding module family.
    Oka N; Mori S; Ikegaya M; Park EY; Miyazaki T
    Glycobiology; 2022 Nov; 32(12):1153-1163. PubMed ID: 36106687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-acetylglucosaminyltransferase IVa regulates metastatic potential of mouse hepatocarcinoma cells through glycosylation of CD147.
    Fan J; Wang S; Yu S; He J; Zheng W; Zhang J
    Glycoconj J; 2012 Aug; 29(5-6):323-34. PubMed ID: 22736280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and characterization of human GnT-IX, a novel beta1,6-N-acetylglucosaminyltransferase that is specifically expressed in the brain.
    Inamori K; Endo T; Ide Y; Fujii S; Gu J; Honke K; Taniguchi N
    J Biol Chem; 2003 Oct; 278(44):43102-9. PubMed ID: 12941944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-glycan alterations are associated with drug resistance in human hepatocellular carcinoma.
    Kudo T; Nakagawa H; Takahashi M; Hamaguchi J; Kamiyama N; Yokoo H; Nakanishi K; Nakagawa T; Kamiyama T; Deguchi K; Nishimura S; Todo S
    Mol Cancer; 2007 May; 6():32. PubMed ID: 17488527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-acetylglucosaminyltransferase IVa promotes invasion of choriocarcinoma.
    Nishino K; Yamamoto E; Niimi K; Sekiya Y; Yamashita Y; Kikkawa F
    Oncol Rep; 2017 Jul; 38(1):440-448. PubMed ID: 28534963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-glycosylation by N-acetylglucosaminyltransferase IVa enhances the interaction of integrin β1 with vimentin and promotes hepatocellular carcinoma cell motility.
    Yang D; Han F; Cai J; Sun H; Wang F; Jiang M; Zhang M; Yuan M; Zhou W; Li H; Yang L; Bai Y; Xiao L; Dong H; Cheng Q; Mao H; Zhou L; Wang R; Li Y; Nie H
    Biochim Biophys Acta Mol Cell Res; 2023 Oct; 1870(7):119513. PubMed ID: 37295747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant expression of N-acetylglucosaminyltransferase-IVa and IVb (GnT-IVa and b) in pancreatic cancer.
    Ide Y; Miyoshi E; Nakagawa T; Gu J; Tanemura M; Nishida T; Ito T; Yamamoto H; Kozutsumi Y; Taniguchi N
    Biochem Biophys Res Commun; 2006 Mar; 341(2):478-82. PubMed ID: 16434023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glycomic effect of N-acetylglucosaminyltransferase III overexpression in metastatic melanoma cells. GnT-III modifies highly branched N-glycans.
    Link-Lenczowski P; Bubka M; Balog CIA; Koeleman CAM; Butters TD; Wuhrer M; Lityńska A
    Glycoconj J; 2018 Apr; 35(2):217-231. PubMed ID: 29502191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The absence of core fucose up-regulates GnT-III and Wnt target genes: a possible mechanism for an adaptive response in terms of glycan function.
    Kurimoto A; Kitazume S; Kizuka Y; Nakajima K; Oka R; Fujinawa R; Korekane H; Yamaguchi Y; Wada Y; Taniguchi N
    J Biol Chem; 2014 Apr; 289(17):11704-11714. PubMed ID: 24619415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental expression of the neuron-specific N-acetylglucosaminyltransferase Vb (GnT-Vb/IX) and identification of its in vivo glycan products in comparison with those of its paralog, GnT-V.
    Lee JK; Matthews RT; Lim JM; Swanier K; Wells L; Pierce JM
    J Biol Chem; 2012 Aug; 287(34):28526-36. PubMed ID: 22715095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-Acetylglucosaminyltransferase IX acts on the GlcNAc beta 1,2-Man alpha 1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan.
    Inamori K; Endo T; Gu J; Matsuo I; Ito Y; Fujii S; Iwasaki H; Narimatsu H; Miyoshi E; Honke K; Taniguchi N
    J Biol Chem; 2004 Jan; 279(4):2337-40. PubMed ID: 14617637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shedding of N-acetylglucosaminyltransferase-V is regulated by maturity of cellular N-glycan.
    Hirata T; Takata M; Tokoro Y; Nakano M; Kizuka Y
    Commun Biol; 2022 Aug; 5(1):743. PubMed ID: 35915223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bisecting GlcNAc Is a General Suppressor of Terminal Modification of
    Nakano M; Mishra SK; Tokoro Y; Sato K; Nakajima K; Yamaguchi Y; Taniguchi N; Kizuka Y
    Mol Cell Proteomics; 2019 Oct; 18(10):2044-2057. PubMed ID: 31375533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cancer-associated glycosyltransferase GnT-V (MGAT5) recognizes the N-glycan core via residues outside its catalytic pocket.
    Osuka RF; Nagae M; Ohuchi A; Ohno S; Yamaguchi Y; Kizuka Y
    FEBS Lett; 2023 Dec; 597(24):3102-3113. PubMed ID: 37974463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the GlcNAc(beta)1,2Man(alpha)- moiety in mammalian development. Null mutations of the genes encoding UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I and UDP-N-acetylglucosamine:alpha-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I.2 cause embryonic lethality and congenital muscular dystrophy in mice and men, respectively.
    Schachter H
    Biochim Biophys Acta; 2002 Dec; 1573(3):292-300. PubMed ID: 12417411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.