These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20015947)

  • 1. Mixture-model based estimation of gene expression variance from public database improves identification of differentially expressed genes in small sized microarray data.
    Kim M; Cho SB; Kim JH
    Bioinformatics; 2010 Feb; 26(4):486-92. PubMed ID: 20015947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unified framework for finding differentially expressed genes from microarray experiments.
    Shaik JS; Yeasin M
    BMC Bioinformatics; 2007 Sep; 8():347. PubMed ID: 17877806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments.
    Zhao H; Chan KL; Cheng LM; Yan H
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S9. PubMed ID: 18315862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments.
    Sartor MA; Tomlinson CR; Wesselkamper SC; Sivaganesan S; Leikauf GD; Medvedovic M
    BMC Bioinformatics; 2006 Dec; 7():538. PubMed ID: 17177995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian mixture model based clustering of replicated microarray data.
    Medvedovic M; Yeung KY; Bumgarner RE
    Bioinformatics; 2004 May; 20(8):1222-32. PubMed ID: 14871871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving identification of differentially expressed genes in microarray studies using information from public databases.
    Kim RD; Park PJ
    Genome Biol; 2004; 5(9):R70. PubMed ID: 15345054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data.
    Teschendorff AE; Wang Y; Barbosa-Morais NL; Brenton JD; Caldas C
    Bioinformatics; 2005 Jul; 21(13):3025-33. PubMed ID: 15860564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density based pruning for identification of differentially expressed genes from microarray data.
    Hu J; Xu J
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S3. PubMed ID: 21047384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An empirical Bayes method for robust variance estimation in detecting DEGs using microarray data.
    You N; Wang X
    J Bioinform Comput Biol; 2017 Oct; 15(5):1750020. PubMed ID: 28893113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Query large scale microarray compendium datasets using a model-based bayesian approach with variable selection.
    Hu M; Qin ZS
    PLoS One; 2009; 4(2):e4495. PubMed ID: 19214232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The latent process decomposition of cDNA microarray data sets.
    Rogers S; Girolami M; Campbell C; Breitling R
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):143-56. PubMed ID: 17044179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A GMM-IG framework for selecting genes as expression panel biomarkers.
    Wang M; Chen JY
    Artif Intell Med; 2010; 48(2-3):75-82. PubMed ID: 20004087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications.
    Yu F; Chen MH; Kuo L; Talbott H; Davis JS
    BMC Bioinformatics; 2015 Aug; 16():245. PubMed ID: 26250443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using pre-existing microarray datasets to increase experimental power: application to insulin resistance.
    Daigle BJ; Deng A; McLaughlin T; Cushman SW; Cam MC; Reaven G; Tsao PS; Altman RB
    PLoS Comput Biol; 2010 Mar; 6(3):e1000718. PubMed ID: 20361040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying differentially expressed genes in meta-analysis via Bayesian model-based clustering.
    Jung YY; Oh MS; Shin DW; Kang SH; Oh HS
    Biom J; 2006 Jun; 48(3):435-50. PubMed ID: 16845907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EVE (external variance estimation) increases statistical power for detecting differentially expressed genes.
    Wille A; Gruissem W; Bühlmann P; Hennig L
    Plant J; 2007 Nov; 52(3):561-9. PubMed ID: 17680783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments.
    Liu H; Tarima S; Borders AS; Getchell TV; Getchell ML; Stromberg AJ
    BMC Bioinformatics; 2005 Apr; 6():106. PubMed ID: 15850479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene selection for microarray gene expression classification using Bayesian Lasso quantile regression.
    Algamal ZY; Alhamzawi R; Mohammad Ali HT
    Comput Biol Med; 2018 Jun; 97():145-152. PubMed ID: 29729489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A full Bayesian hierarchical mixture model for the variance of gene differential expression.
    Manda SO; Walls RE; Gilthorpe MS
    BMC Bioinformatics; 2007 Apr; 8():124. PubMed ID: 17439644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-way AIC: detection of differentially expressed genes from large scale microarray meta-dataset.
    Tsuyuzaki K; Tominaga D; Kwon Y; Miyazaki S
    BMC Genomics; 2013; 14 Suppl 2(Suppl 2):S9. PubMed ID: 23445621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.