These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 20016153)
1. Satellite DNA in the karyotype evolution of domestic animals--clinical considerations. Adega F; Guedes-Pinto H; Chaves R Cytogenet Genome Res; 2009; 126(1-2):12-20. PubMed ID: 20016153 [TBL] [Abstract][Full Text] [Related]
2. Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives. Vicari MR; Nogaroto V; Noleto RB; Cestari MM; Cioffi MB; Almeida MC; Moreira-Filho O; Bertollo LA; Artoni RF J Fish Biol; 2010 Apr; 76(5):1094-116. PubMed ID: 20409164 [TBL] [Abstract][Full Text] [Related]
3. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Plohl M; Luchetti A; Mestrović N; Mantovani B Gene; 2008 Feb; 409(1-2):72-82. PubMed ID: 18182173 [TBL] [Abstract][Full Text] [Related]
4. Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning. Louzada S; Paço A; Kubickova S; Adega F; Guedes-Pinto H; Rubes J; Chaves R Micron; 2008 Dec; 39(8):1149-55. PubMed ID: 18602266 [TBL] [Abstract][Full Text] [Related]
5. [Study of alpha-satellite DNA in cosmid libraries, specific for chromosomes 13, 21, and 22, using fluorescence in situ hybridization]. Solov'ev IV; Iurov IuB; Vorsanova SG; Marcais B; Rogaev EI; Kapanadze BI; Brodianskiĭ VM; Iankovskiĭ NK; Roizes G Genetika; 1998 Nov; 34(11):1470-9. PubMed ID: 10096024 [TBL] [Abstract][Full Text] [Related]
6. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Martins C; Ferreira IA; Oliveira C; Foresti F; Galetti PM Genetica; 2006 May; 127(1-3):133-41. PubMed ID: 16850219 [TBL] [Abstract][Full Text] [Related]
7. Chromosomal location and distribution of As51 satellite DNA in five species of the genus Astyanax (Teleostei, Characidae, Incertae sedis). Kantek DL; Vicari MR; Peres WA; Cestari MM; Artoni RF; Bertollo LA; Moreira-Filho O J Fish Biol; 2009 Aug; 75(2):408-21. PubMed ID: 20738546 [TBL] [Abstract][Full Text] [Related]
8. Satellite DNA evolution. Plohl M; Meštrović N; Mravinac B Genome Dyn; 2012; 7():126-52. PubMed ID: 22759817 [TBL] [Abstract][Full Text] [Related]
9. Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation. Kalitsis P; Griffiths B; Choo KH Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8786-91. PubMed ID: 16731628 [TBL] [Abstract][Full Text] [Related]
10. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA. Feliciello I; Picariello O; Chinali G Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734 [TBL] [Abstract][Full Text] [Related]
12. [Chromosomal localization and evolutionary age of satellite DNAs of Mustelidae]. Lushnikova TP; Grafodatskiĭ AS; Romashchenko AG; Radzhabli SI Genetika; 1988 Dec; 24(12):2134-40. PubMed ID: 3250906 [TBL] [Abstract][Full Text] [Related]
13. Fitness reduction associated with the deletion of a satellite DNA array. Wu CI; True JR; Johnson N Nature; 1989 Sep; 341(6239):248-51. PubMed ID: 2506453 [TBL] [Abstract][Full Text] [Related]
14. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Sharma S; Raina SN Cytogenet Genome Res; 2005; 109(1-3):15-26. PubMed ID: 15753554 [TBL] [Abstract][Full Text] [Related]
15. Evolution of ancient satellite DNAs in sturgeon genomes. Robles F; de la Herrán R; Ludwig A; Ruiz Rejón C; Ruiz Rejón M; Garrido-Ramos MA Gene; 2004 Aug; 338(1):133-42. PubMed ID: 15302414 [TBL] [Abstract][Full Text] [Related]
16. Transcription of pericentromeric heterochromatin in beetles--satellite DNAs as active regulatory elements. Pezer Z; Ugarković D Cytogenet Genome Res; 2009; 124(3-4):268-76. PubMed ID: 19556779 [TBL] [Abstract][Full Text] [Related]
17. Chromosomal distribution and organization of three cervid satellite DNAs in Chinese water deer (Hydropotes inermis). Lin CC; Li YC Cytogenet Genome Res; 2006; 114(2):147-54. PubMed ID: 16825767 [TBL] [Abstract][Full Text] [Related]
18. A highly conserved pericentromeric domain in human and gorilla chromosomes. Pita M; Gosálvez J; Gosálvez A; Nieddu M; López-Fernández C; Mezzanotte R Cytogenet Genome Res; 2009; 126(3):253-8. PubMed ID: 20068296 [TBL] [Abstract][Full Text] [Related]
19. [Molecular cytogenetic research on the polymorphism of segments of the constitutive heterochromatin in human chromosomes]. Iurov IuB; Mitkevich SP; Aleksandrov IA Genetika; 1988 Feb; 24(2):356-65. PubMed ID: 3360319 [TBL] [Abstract][Full Text] [Related]
20. Isolation and characterization of two satellite DNAs in some Iberian rock lizards (Squamata, Lacertidae). Giovannotti M; Rojo V; Nisi Cerioni P; González-Tizón A; Martínez-Lage A; Splendiani A; Naveira H; Ruggeri P; Arribas Ó; Olmo E; Caputo Barucchi V J Exp Zool B Mol Dev Evol; 2014 Jan; 322(1):13-26. PubMed ID: 24014193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]