These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 20016260)

  • 1. Cdc48 connects with eIF3.
    Kriegenburg F; Hartmann-Petersen R
    Cell Cycle; 2010 Jan; 9(1):24-5. PubMed ID: 20016260
    [No Abstract]   [Full Text] [Related]  

  • 2. Int6 and Moe1 interact with Cdc48 to regulate ERAD and proper chromosome segregation.
    Otero JH; Suo J; Gordon C; Chang EC
    Cell Cycle; 2010 Jan; 9(1):147-61. PubMed ID: 20016281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dsc E3 ligase localization to the Golgi requires the ATPase Cdc48 and cofactor Ufd1 for activation of sterol regulatory element-binding protein in fission yeast.
    Burr R; Ribbens D; Raychaudhuri S; Stewart EV; Ho J; Espenshade PJ
    J Biol Chem; 2017 Sep; 292(39):16333-16350. PubMed ID: 28821619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase.
    Stewart EV; Lloyd SJ; Burg JS; Nwosu CC; Lintner RE; Daza R; Russ C; Ponchner K; Nusbaum C; Espenshade PJ
    J Biol Chem; 2012 Jan; 287(1):672-681. PubMed ID: 22086920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Golgi rhomboid protease Rbd2 recruits Cdc48 to cleave yeast SREBP.
    Hwang J; Ribbens D; Raychaudhuri S; Cairns L; Gu H; Frost A; Urban S; Espenshade PJ
    EMBO J; 2016 Nov; 35(21):2332-2349. PubMed ID: 27655872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ubx2 and Ubx3 cofactors direct Cdc48 activity to proteolytic and nonproteolytic ubiquitin-dependent processes.
    Hartmann-Petersen R; Wallace M; Hofmann K; Koch G; Johnsen AH; Hendil KB; Gordon C
    Curr Biol; 2004 May; 14(9):824-8. PubMed ID: 15120077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of SUMO substrates to a Cdc48-Ufd1-Npl4 segregase and STUbL pathway in fission yeast.
    Køhler JB; Tammsalu T; Jørgensen MM; Steen N; Hay RT; Thon G
    Nat Commun; 2015 Nov; 6():8827. PubMed ID: 26537787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role of the Nse4 kleisin and Nse1/Nse3 KITE subunits in the ATPase cycle of SMC5/6.
    Vondrova L; Kolesar P; Adamus M; Nociar M; Oliver AW; Palecek JJ
    Sci Rep; 2020 Jun; 10(1):9694. PubMed ID: 32546830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome.
    Yen HC; Gordon C; Chang EC
    Cell; 2003 Jan; 112(2):207-17. PubMed ID: 12553909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation.
    Schuberth C; Richly H; Rumpf S; Buchberger A
    EMBO Rep; 2004 Aug; 5(8):818-24. PubMed ID: 15258615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast.
    Jivotovskaya AV; Valásek L; Hinnebusch AG; Nielsen KH
    Mol Cell Biol; 2006 Feb; 26(4):1355-72. PubMed ID: 16449648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries.
    Sha Z; Brill LM; Cabrera R; Kleifeld O; Scheliga JS; Glickman MH; Chang EC; Wolf DA
    Mol Cell; 2009 Oct; 36(1):141-52. PubMed ID: 19818717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdc48 is required for the stability of Cut1/separase in mitotic anaphase.
    Ikai N; Yanagida M
    J Struct Biol; 2006 Oct; 156(1):50-61. PubMed ID: 16904908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Rsp5 ubiquitin ligase and the AAA-ATPase Cdc48 control the ubiquitin-mediated degradation of the COPII component Sec23.
    Ossareh-Nazari B; Cohen M; Dargemont C
    Exp Cell Res; 2010 Dec; 316(20):3351-7. PubMed ID: 20846524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eucaryotic initiation factor 4B controls eIF3-mediated ribosomal entry of viral reinitiation factor.
    Park HS; Browning KS; Hohn T; Ryabova LA
    EMBO J; 2004 Mar; 23(6):1381-91. PubMed ID: 14988734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rpg1p/Tif32p, a subunit of translation initiation factor 3, interacts with actin-associated protein Sla2p.
    Palecek J; Hasek J; Ruis H
    Biochem Biophys Res Commun; 2001 Apr; 282(5):1244-50. PubMed ID: 11302750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) complex.
    Sergeant J; Taylor E; Palecek J; Fousteri M; Andrews EA; Sweeney S; Shinagawa H; Watts FZ; Lehmann AR
    Mol Cell Biol; 2005 Jan; 25(1):172-84. PubMed ID: 15601840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. F-BAR/EFC Domain Proteins: Some Assembly Required.
    Traub LM
    Dev Cell; 2015 Dec; 35(6):664-6. PubMed ID: 26702823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and functions of the chaperone-like p97/CDC48 in plants.
    Bègue H; Jeandroz S; Blanchard C; Wendehenne D; Rosnoblet C
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3053-3060. PubMed ID: 27717811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc48 can distinguish between native and non-native proteins in the absence of cofactors.
    Thoms S
    FEBS Lett; 2002 Jun; 520(1-3):107-10. PubMed ID: 12044880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.