BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 20016621)

  • 21. A heterodyne interferometer for angle metrology.
    Hahn I; Weilert M; Wang X; Goullioud R
    Rev Sci Instrum; 2010 Apr; 81(4):045103. PubMed ID: 20441364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High resolution interferometer with multiple-pass optical configuration.
    Ahn J; Kim JA; Kang CS; Kim JW; Kim S
    Opt Express; 2009 Nov; 17(23):21042-9. PubMed ID: 19997342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A synthetic heterodyne interferometer for small amplitude of vibration measurement.
    Kang S; La J; Yoon H; Park K
    Rev Sci Instrum; 2008 May; 79(5):053106. PubMed ID: 18513060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subdivision and direction recognition of lambda/16 of orthogonal fringes for nanometric measurement.
    Hu H; Qiu X; Wang J; Ju A; Zhang Y
    Appl Opt; 2009 Nov; 48(33):6479-84. PubMed ID: 19935969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Common-path self-referencing interferometer for carrier-envelope offset frequency stabilization with enhanced noise immunity.
    Tsatourian V; Margolis HS; Marra G; Reid DT; Gill P
    Opt Lett; 2010 Apr; 35(8):1209-11. PubMed ID: 20410969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy.
    Aramaki M; Ogiwara K; Etoh S; Yoshimura S; Tanaka MY
    Rev Sci Instrum; 2009 May; 80(5):053505. PubMed ID: 19485505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-visibility interference fringes with femtosecond laser radiation.
    Martínez-Cuenca R; Martínez-León L; Lancis J; Mínguez-Vega G; Mendoza-Yero O; Tajahuerce E; Clemente P; Andrés P
    Opt Express; 2009 Dec; 17(25):23016-24. PubMed ID: 20052228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Temperature compensation strategy and implementation for photoelectric modulation interferometer with large optical path difference].
    Wang YC; Wang ZB; Zhang JL; Chen YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1429-32. PubMed ID: 23905367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Study on miniature static Fourier transform spectrometer used in laser warning receiver].
    Tian EM; Zhang JL; Li X; Zhang Y; Wang ZB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):853-7. PubMed ID: 19455842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical design for laser Doppler angular encoder with sub-nrad sensitivity.
    Shu D; Alp EE; Barraza J; Kuzay TM; Mooney T
    J Synchrotron Radiat; 1998 May; 5(Pt 3):826-8. PubMed ID: 15263666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution.
    Grassani D; Galli M; Bajoni D
    Opt Lett; 2014 Apr; 39(8):2530-3. PubMed ID: 24979036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of particle flux in a static matrix with suppressed influence of optical properties, using low coherence interferometry.
    Varghese B; Rajan V; Van Leeuwen TG; Steenbergen W
    Opt Express; 2010 Feb; 18(3):2849-57. PubMed ID: 20174114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Observation of spectral interference for any path difference in an interferometer.
    Salazar-Serrano LJ; Valencia A; Torres JP
    Opt Lett; 2014 Aug; 39(15):4478-81. PubMed ID: 25078207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual beat-frequencies laser Doppler interferometer.
    Takita A; Ebara H; Fujii Y
    Rev Sci Instrum; 2011 Dec; 82(12):123111. PubMed ID: 22225203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd's interferometer.
    de Boor J; Kim DS; Schmidt V
    Opt Lett; 2010 Oct; 35(20):3450-2. PubMed ID: 20967096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. W-shaped common-path interferometer.
    Wei R; Di L; Qiao N; Chen S
    Appl Opt; 2020 Dec; 59(34):10973-10979. PubMed ID: 33361920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noise reduction of air turbulence via thequasi-common-path method.
    He Y; Zhao S; Wei H; Li Y
    Appl Opt; 2017 Aug; 56(23):6668-6672. PubMed ID: 29047960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of a dual-frequency laser interferometer with unique optical subdivision techniques.
    Cheng Z; Gao H; Zhang Z; Huang H; Zhu J
    Appl Opt; 2006 Apr; 45(10):2246-50. PubMed ID: 16607991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shear-unlimited common-path speckle interferometer.
    Dong J; Wang S; Yetisen AK; Dong X; Pöller F; Ong N; Jakobi M; Liu Z; Salazar Bloise F; Koch AW
    Opt Lett; 2020 Mar; 45(6):1305-1308. PubMed ID: 32163951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation-free sub-Doppler laser frequency stabilization to molecular iodine with a common-path, two-color interferometer.
    Burdack P; Tröbs M; Hunnekuhl M; Fallnich C; Freitag I
    Opt Express; 2004 Feb; 12(4):644-50. PubMed ID: 19474867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.