These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Evaluation of transparent carbon nanotube networks of homogeneous electronic type. Jackson RK; Munro A; Nebesny K; Armstrong N; Graham S ACS Nano; 2010 Mar; 4(3):1377-84. PubMed ID: 20201542 [TBL] [Abstract][Full Text] [Related]
4. Comparative study on different carbon nanotube materials in terms of transparent conductive coatings. Li Z; Kandel HR; Dervishi E; Saini V; Xu Y; Biris AR; Lupu D; Salamo GJ; Biris AS Langmuir; 2008 Mar; 24(6):2655-62. PubMed ID: 18251555 [TBL] [Abstract][Full Text] [Related]
5. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. Li X; Tu X; Zaric S; Welsher K; Seo WS; Zhao W; Dai H J Am Chem Soc; 2007 Dec; 129(51):15770-1. PubMed ID: 18052285 [TBL] [Abstract][Full Text] [Related]
6. Thin film transistors using preferentially grown semiconducting single-walled carbon nanotube networks by water-assisted plasma-enhanced chemical vapor deposition. Kim UJ; Lee EH; Kim JM; Min YS; Kim E; Park W Nanotechnology; 2009 Jul; 20(29):295201. PubMed ID: 19567966 [TBL] [Abstract][Full Text] [Related]
7. Solid-state 13C NMR assignment of carbon resonances on metallic and semiconducting single-walled carbon nanotubes. Engtrakul C; Davis MF; Mistry K; Larsen BA; Dillon AC; Heben MJ; Blackburn JL J Am Chem Soc; 2010 Jul; 132(29):9956-7. PubMed ID: 20593776 [TBL] [Abstract][Full Text] [Related]
8. Assessment of chemically separated carbon nanotubes for nanoelectronics. Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484 [TBL] [Abstract][Full Text] [Related]
9. Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles. Kato T; Hatakeyama R J Am Chem Soc; 2008 Jun; 130(25):8101-7. PubMed ID: 18512918 [TBL] [Abstract][Full Text] [Related]
10. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Kanungo M; Lu H; Malliaras GG; Blanchet GB Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical and conductivity measurements of single-wall carbon nanotube network electrodes. Day TM; Wilson NR; Macpherson JV J Am Chem Soc; 2004 Dec; 126(51):16724-5. PubMed ID: 15612701 [TBL] [Abstract][Full Text] [Related]
13. Catalytic polymerization and facile grafting of poly(furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon. Yi B; Rajagopalan R; Foley HC; Kim UJ; Liu X; Eklund PC J Am Chem Soc; 2006 Aug; 128(34):11307-13. PubMed ID: 16925450 [TBL] [Abstract][Full Text] [Related]
14. Selective enhancement of carbon nanotube photoluminescence by resonant energy transfer. Ahmad A; Kern K; Balasubramanian K Chemphyschem; 2009 Apr; 10(6):905-9. PubMed ID: 19308969 [TBL] [Abstract][Full Text] [Related]
15. Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging. Loos J; Alexeev A; Grossiord N; Koning CE; Regev O Ultramicroscopy; 2005 Sep; 104(2):160-7. PubMed ID: 15885910 [TBL] [Abstract][Full Text] [Related]
16. Effect of backbone chemical structure of polymers on selective (n,m)single-walled carbon nanotube recognition/extraction behavior. Ozawa H; Fujigaya T; Niidome Y; Nakashima N Chem Asian J; 2011 Dec; 6(12):3281-5. PubMed ID: 21936058 [TBL] [Abstract][Full Text] [Related]