These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20016672)

  • 1. The Differential Gene Expression Pattern of Mycobacterium tuberculosis in Response to Capreomycin and PA-824 versus First-Line TB Drugs Reveals Stress- and PE/PPE-Related Drug Targets.
    Fu LM; Tai SC
    Int J Microbiol; 2009; 2009():879621. PubMed ID: 20016672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction topology of Mycobacterium tuberculosis genes response to capreomycin and novel clues for more drug targets.
    Zheng F; Xie J
    J Cell Biochem; 2011 Oct; 112(10):2716-20. PubMed ID: 21678479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide exploration of the drug action of capreomycin on Mycobacterium tuberculosis using Affymetrix oligonucleotide GeneChips.
    Fu LM; Shinnick TM
    J Infect; 2007 Mar; 54(3):277-84. PubMed ID: 16822547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Prospects for development of new antituberculous drugs].
    Tomioka H
    Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capreomycin is active against non-replicating M. tuberculosis.
    Heifets L; Simon J; Pham V
    Ann Clin Microbiol Antimicrob; 2005 Apr; 4():6. PubMed ID: 15804353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of bedaquiline and capreomycin on the gene expression patterns of multidrug-resistant Mycobacterium tuberculosis H37Rv strain and understanding the molecular mechanism of antibiotic resistance.
    Miryala SK; Anbarasu A; Ramaiah S
    J Cell Biochem; 2019 Sep; 120(9):14499-14509. PubMed ID: 30989745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses.
    Zvi A; Ariel N; Fulkerson J; Sadoff JC; Shafferman A
    BMC Med Genomics; 2008 May; 1():18. PubMed ID: 18505592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA.
    Goulding CW; Perry LJ; Anderson D; Sawaya MR; Cascio D; Apostol MI; Chan S; Parseghian A; Wang SS; Wu Y; Cassano V; Gill HS; Eisenberg D
    Biophys Chem; 2003 Sep; 105(2-3):361-70. PubMed ID: 14499904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systemic approach to explore the mechanisms of drug resistance and altered signaling cascades in extensively drug-resistant tuberculosis.
    Udhaya Kumar S; Saleem A; Thirumal Kumar D; Anu Preethi V; Younes S; Zayed H; Tayubi IA; George Priya Doss C
    Adv Protein Chem Struct Biol; 2021; 127():343-364. PubMed ID: 34340773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The copper (II) ion as a carrier for the antibiotic capreomycin against Mycobacterium tuberculosis.
    Manning T; Mikula R; Lee H; Calvin A; Darrah J; Wylie G; Phillips D; Bythell BJ
    Bioorg Med Chem Lett; 2014 Feb; 24(3):976-82. PubMed ID: 24424129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of linezolid and second-line anti-tuberculosis agents against multidrug-resistant Mycobacterium tuberculosis in vitro and in vivo.
    Zhao W; Zheng M; Wang B; Mu X; Li P; Fu L; Liu S; Guo Z
    Int J Infect Dis; 2016 Nov; 52():23-28. PubMed ID: 27613365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuberculosis drug targets.
    Zhang Y; Amzel LM
    Curr Drug Targets; 2002 Apr; 3(2):131-54. PubMed ID: 11958297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning and tubercular drug target recognition.
    Fu LM
    Curr Pharm Des; 2014; 20(27):4307-18. PubMed ID: 24245763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Recent progress in mycobacteriology].
    Okada M; Kobayashi K
    Kekkaku; 2007 Oct; 82(10):783-99. PubMed ID: 18018602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Insight Into the Fluoroquinolone and Aminoglycoside Resistance of Multidrug-Resistant
    Varghese B; Al-Hajoj S
    Am J Trop Med Hyg; 2017 May; 96(5):1066-1070. PubMed ID: 28500800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the Mycobacterium tuberculosis PE/PPE genes.
    Voskuil MI; Schnappinger D; Rutherford R; Liu Y; Schoolnik GK
    Tuberculosis (Edinb); 2004; 84(3-4):256-62. PubMed ID: 15207495
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.