These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Schott RK; Refvik SP; Hauser FE; López-Fernández H; Chang BS Mol Biol Evol; 2014 May; 31(5):1149-65. PubMed ID: 24509690 [TBL] [Abstract][Full Text] [Related]
3. Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera). Shen YY; Liu J; Irwin DM; Zhang YP PLoS One; 2010 Jan; 5(1):e8838. PubMed ID: 20098620 [TBL] [Abstract][Full Text] [Related]
4. Diversified Mammalian Visuasl Adaptations to Bright- or Dim-Light Environments. Gai Y; Tian R; Liu F; Mu Y; Shan L; Irwin DM; Liu Y; Xu S; Yang G Mol Biol Evol; 2023 Apr; 40(4):. PubMed ID: 36929909 [TBL] [Abstract][Full Text] [Related]
5. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment. Dungan SZ; Kosyakov A; Chang BS Mol Biol Evol; 2016 Feb; 33(2):323-36. PubMed ID: 26486871 [TBL] [Abstract][Full Text] [Related]
6. The molecular origin and evolution of dim-light vision in mammals. Bickelmann C; Morrow JM; Du J; Schott RK; van Hazel I; Lim S; Müller J; Chang BS Evolution; 2015 Nov; 69(11):2995-3003. PubMed ID: 26536060 [TBL] [Abstract][Full Text] [Related]
7. Accelerated Evolution and Functional Divergence of the Dim Light Visual Pigment Accompanies Cichlid Colonization of Central America. Hauser FE; Ilves KL; Schott RK; Castiglione GM; López-Fernández H; Chang BSW Mol Biol Evol; 2017 Oct; 34(10):2650-2664. PubMed ID: 28957507 [TBL] [Abstract][Full Text] [Related]
8. Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments. Gutierrez EA; Castiglione GM; Morrow JM; Schott RK; Loureiro LO; Lim BK; Chang BSW Mol Biol Evol; 2018 Oct; 35(10):2422-2434. PubMed ID: 30010964 [TBL] [Abstract][Full Text] [Related]
9. To see or not to see: molecular evolution of the rhodopsin visual pigment in neotropical electric fishes. Van Nynatten A; Janzen FH; Brochu K; Maldonado-Ocampo JA; Crampton WGR; Chang BSW; Lovejoy NR Proc Biol Sci; 2019 Jul; 286(1906):20191182. PubMed ID: 31288710 [TBL] [Abstract][Full Text] [Related]
10. High molecular diversity in the rhodopsin gene in closely related goby fishes: A role for visual pigments in adaptive speciation? Larmuseau MH; Huyse T; Vancampenhout K; Van Houdt JK; Volckaert FA Mol Phylogenet Evol; 2010 May; 55(2):689-98. PubMed ID: 19822217 [TBL] [Abstract][Full Text] [Related]
11. The role of ecological factors in shaping bat cone opsin evolution. Gutierrez EA; Schott RK; Preston MW; Loureiro LO; Lim BK; Chang BSW Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29618549 [TBL] [Abstract][Full Text] [Related]
12. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes. Hauzman E; Bonci DMO; Suárez-Villota EY; Neitz M; Ventura DF BMC Evol Biol; 2017 Dec; 17(1):249. PubMed ID: 29228925 [TBL] [Abstract][Full Text] [Related]
13. Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence. Davies KT; Cotton JA; Kirwan JD; Teeling EC; Rossiter SJ Heredity (Edinb); 2012 May; 108(5):480-9. PubMed ID: 22167055 [TBL] [Abstract][Full Text] [Related]
14. The voltage-gated potassium channel subfamily KQT member 4 (KCNQ4) displays parallel evolution in echolocating bats. Liu Y; Han N; Franchini LF; Xu H; Pisciottano F; Elgoyhen AB; Rajan KE; Zhang S Mol Biol Evol; 2012 May; 29(5):1441-50. PubMed ID: 22319145 [TBL] [Abstract][Full Text] [Related]
15. Evolution of rhodopsin in flatfishes (Pleuronectiformes) is associated with depth and migratory behavior. Macpherson ESB; Hauser FE; Van Nynatten A; Chang BSW; Lovejoy NR J Fish Biol; 2024 Sep; 105(3):779-790. PubMed ID: 38859571 [TBL] [Abstract][Full Text] [Related]
16. Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion. Van Nynatten A; Bloom D; Chang BS; Lovejoy NR Biol Lett; 2015 Jul; 11(7):. PubMed ID: 26224386 [TBL] [Abstract][Full Text] [Related]
17. Molecular evolution and convergence of the rhodopsin gene in Gymnogobius, a goby group having diverged into coastal to freshwater habitats. Ito RK; Harada S; Tabata R; Watanabe K J Evol Biol; 2022 Feb; 35(2):333-346. PubMed ID: 34689368 [TBL] [Abstract][Full Text] [Related]
18. Recreated Ancestral Opsin Associated with Marine to Freshwater Croaker Invasion Reveals Kinetic and Spectral Adaptation. Van Nynatten A; Castiglione GM; de A Gutierrez E; Lovejoy NR; Chang BSW Mol Biol Evol; 2021 May; 38(5):2076-2087. PubMed ID: 33481002 [TBL] [Abstract][Full Text] [Related]
19. Rhodopsin population genetics and local adaptation: variable dim-light vision in sand gobies is illuminated. Ebert D; Andrew RL Mol Ecol; 2009 Oct; 18(20):4140-2. PubMed ID: 19857228 [TBL] [Abstract][Full Text] [Related]