BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 2001691)

  • 1. Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains.
    Henriksson G; Pettersson G; Johansson G; Ruiz A; Uzcategui E
    Eur J Biochem; 1991 Feb; 196(1):101-6. PubMed ID: 2001691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii.
    Baminger U; Subramaniam SS; Renganathan V; Haltrich D
    Appl Environ Microbiol; 2001 Apr; 67(4):1766-74. PubMed ID: 11282631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phanerochaete chrysosporium cellobiohydrolase and cellobiose dehydrogenase transcripts in wood.
    Vallim MA; Janse BJ; Gaskell J; Pizzirani-Kleiner AA; Cullen D
    Appl Environ Microbiol; 1998 May; 64(5):1924-8. PubMed ID: 9572973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium.
    Yoshida M; Igarashi K; Wada M; Kaneko S; Suzuki N; Matsumura H; Nakamura N; Ohno H; Samejima M
    Appl Environ Microbiol; 2005 Aug; 71(8):4548-55. PubMed ID: 16085848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a novel AA3_1 xylooligosaccharide dehydrogenase from Thermothelomyces myriococcoides CBS 398.93.
    Zhao H; Karppi J; Nguyen TTM; Bellemare A; Tsang A; Master E; Tenkanen M
    Biotechnol Biofuels Bioprod; 2022 Dec; 15(1):135. PubMed ID: 36476312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active-Site Engineering Switches Carbohydrate Regiospecificity in a Fungal Copper Radical Oxidase.
    Mathieu Y; Cleveland ME; Brumer H
    ACS Catal; 2022 Aug; 12(16):10264-10275. PubMed ID: 36033369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete
    Igarashi K; Kaneko S; Kitaoka M; Samejima M
    J Appl Glycosci (1999); 2020; 67(2):51-57. PubMed ID: 34354528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural microbial polysaccharides as effective factors for modification of the catalytic properties of fungal cellobiose dehydrogenase.
    Sulej J; Jaszek M; Osińska-Jaroszuk M; Matuszewska A; Bancerz R; Janczarek M
    Arch Microbiol; 2021 Sep; 203(7):4433-4448. PubMed ID: 34132850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of Serpula lacrymans iron-reductase enzymes in lignocellulose breakdown.
    Nurika I; Eastwood DC; Bugg TDH; Barker GC
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):145-154. PubMed ID: 31734813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying direct electron transfer by site-directed immobilization of cellobiose dehydrogenase.
    Meneghello M; Al-Lolage FA; Ma S; Ludwig R; Bartlett PN
    ChemElectroChem; 2019 Feb; 6(3):700-713. PubMed ID: 31700765
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Turbe-Doan A; Record E; Lombard V; Kumar R; Levasseur A; Henrissat B; Garron ML
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplicity of enzymatic functions in the CAZy AA3 family.
    Sützl L; Laurent CVFP; Abrera AT; Schütz G; Ludwig R; Haltrich D
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2477-2492. PubMed ID: 29411063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations.
    Kracher D; Zahma K; Schulz C; Sygmund C; Gorton L; Ludwig R
    FEBS J; 2015 Aug; 282(16):3136-48. PubMed ID: 25913436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a novel PQQ-dependent quinohemoprotein pyranose dehydrogenase from Coprinopsis cinerea classified into auxiliary activities family 12 in carbohydrate-active enzymes.
    Takeda K; Matsumura H; Ishida T; Samejima M; Ohno H; Yoshida M; Igarashi K; Nakamura N
    PLoS One; 2015; 10(2):e0115722. PubMed ID: 25679509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carboxylated or aminated polyaniline-multiwalled carbon nanotubes nanohybrids for immobilization of cellobiose dehydrogenase on gold electrodes.
    Tanne J; Kracher D; Dietzel B; Schulz B; Ludwig R; Lisdat F; Scheller FW; Bier FF
    Biosensors (Basel); 2014 Dec; 4(4):370-86. PubMed ID: 25587429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional response of the cellobiose dehydrogenase gene to cello- and xylooligosaccharides in the basidiomycete Phanerochaete chrysosporium.
    Hori C; Suzuki H; Igarashi K; Samejima M
    Appl Environ Microbiol; 2012 May; 78(10):3770-3. PubMed ID: 22407682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes.
    Bey M; Berrin JG; Poidevin L; Sigoillot JC
    Microb Cell Fact; 2011 Dec; 10():113. PubMed ID: 22204630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface.
    Tasca F; Harreither W; Ludwig R; Gooding JJ; Gorton L
    Anal Chem; 2011 Apr; 83(8):3042-9. PubMed ID: 21417322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellobiose dehydrogenase, an active agent in cellulose depolymerization.
    Mansfield SD; De Jong E; Saddler JN
    Appl Environ Microbiol; 1997 Oct; 63(10):3804-9. PubMed ID: 16535705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.