BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 20017395)

  • 41. Beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral ischemia-reperfusion injury in rats.
    Sun L; Tian X; Gou L; Ling X; Wang L; Feng Y; Yin X; Liu Y
    Can J Physiol Pharmacol; 2013 Jul; 91(7):562-9. PubMed ID: 23826680
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prevention of neuronal damage by calcium channel blockers with antioxidative effects after transient focal ischemia in rats.
    Lukic-Panin V; Kamiya T; Zhang H; Hayashi T; Tsuchiya A; Sehara Y; Deguchi K; Yamashita T; Abe K
    Brain Res; 2007 Oct; 1176():143-50. PubMed ID: 17904110
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protective effect of serofendic acid, administered intravenously, on cerebral ischemia-reperfusion injury in rats.
    Ioroi T; Taguchi K; Izumi Y; Takada-Takatori Y; Akaike A; Kume T
    Brain Res; 2013 Sep; 1532():99-105. PubMed ID: 23954678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protective effect of naringin against ischemic reperfusion cerebral injury: possible neurobehavioral, biochemical and cellular alterations in rat brain.
    Gaur V; Aggarwal A; Kumar A
    Eur J Pharmacol; 2009 Aug; 616(1-3):147-54. PubMed ID: 19577560
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correlation between plasma and hepatic phosphatidylcholine hydroperoxide, energy charge, and total glutathione content in ischemia reperfusion injury of rat liver.
    Suzuki M; Fukuhara K; Unno M; Htwe T; Takeuchi H; Kakita T; Matsuno S
    Hepatogastroenterology; 2000; 47(34):1082-9. PubMed ID: 11020884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protective effects of sodium beta-aescin on ischemia-reperfusion injury in rat brain.
    Hu XM; Zeng FD
    Yao Xue Xue Bao; 2004 Jun; 39(6):419-23. PubMed ID: 15491097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of 4-Methyl-Phenyl Biguanide on Free Radical Homeostasis and Activity of Oxidative Metabolism Enzymes in Rats with Cardiovascular Pathology Developing against the Background of Rheumatoid Arthritis.
    Safonova ОА; Popova TN; Shestakova TN
    Bull Exp Biol Med; 2019 Mar; 166(5):606-609. PubMed ID: 30903494
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of postcardiac arrest brain protein oxidation by acetyl-L-carnitine.
    Liu Y; Rosenthal RE; Starke-Reed P; Fiskum G
    Free Radic Biol Med; 1993 Dec; 15(6):667-70. PubMed ID: 8138193
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress.
    Floyd RA; Carney JM
    Ann Neurol; 1992; 32 Suppl():S22-7. PubMed ID: 1510377
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The resistance of low brainstem tissue to free radical oxidation in rats during periodic breathing following hydroxybutyrate treatment].
    Tarakanov IA; Tikhomirova LN; Zhukova AG; Safonov VA
    Patol Fiziol Eksp Ter; 2013; (4):21-5. PubMed ID: 24640769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Has free radical release across the brain after carotid endarterectomy traditionally been underestimated? Significance of reperfusion hemodynamics.
    Bailey DM; Morris-Stiff G; McCord JM; Lewis MH
    Stroke; 2007 Jun; 38(6):1946-8. PubMed ID: 17463314
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of 3,5-dicarbomethoxyphenylbiguanide on free radical homeostasis in rats with experimental myocarditis.
    Tanigina ES; Semenikhina AV; Popova TN; Matasova LV; Kryl'skiy ED
    Bull Exp Biol Med; 2012 Dec; 154(2):192-5. PubMed ID: 23330122
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Free radical oxidation in rat brain during chronic stress and pharmacological regulation of this process.
    Kutlubaev MA; Farkhutdinov RR; Akhmadeeva LR; Mufazalov AF
    Bull Exp Biol Med; 2005 Oct; 140(4):416-8. PubMed ID: 16671569
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [On the mechanism of cytogenetic effect of electromagnetic radiation: a role of oxidation homeostasis].
    Brezitskaia HV; Timchenko OI
    Radiats Biol Radioecol; 2000; 40(2):149-53. PubMed ID: 10819036
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intensity of Free Radical Processes in Rat Liver under Type 2 Diabetes and Introduction of Epifamin.
    Popova TN; Agarkov AA; Verevkin AN
    Acta Naturae; 2013 Oct; 5(4):118-22. PubMed ID: 24455191
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Free radicals.
    Van Lente F
    Anal Chem; 1993 Jun; 65(12):374R-377R. PubMed ID: 8333611
    [No Abstract]   [Full Text] [Related]  

  • 57. Solution-phase, parallel synthesis and pharmacological evaluation of acylguanidine derivatives as potential sodium channel blockers.
    Padmanabhan S; Lavin RC; Thakker PM; Guo J; Zhang L; Moore D; Perlman ME; Kirk C; Daly D; Burke-Howie KJ; Wolcott T; Chari S; Berlove D; Fischer JB; Holt WF; Durant GJ; McBurney RN
    Bioorg Med Chem Lett; 2001 Dec; 11(24):3151-5. PubMed ID: 11720863
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Specific features of Ca2+ binding by mono-, di-, and trisubstituted guanidine derivatives.
    Saakov VS; Rozengart EV; Suvorov AA; Khovanskikh AE
    Dokl Biochem Biophys; 2003; 390():165-70. PubMed ID: 12959071
    [No Abstract]   [Full Text] [Related]  

  • 59. [Variations in blood levels and clearance of guanidine sulfate in relation to the dose, administration schedule and age of the subject].
    GIOVANNOLI F
    Minerva Med; 1949 Oct; 40(52):572-5. PubMed ID: 15394756
    [No Abstract]   [Full Text] [Related]  

  • 60. Influence of guanidine and its derivatives on the action of amylase.
    Mystkowski EM
    Biochem J; 1932; 26(3):910-4. PubMed ID: 16744901
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.