BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20017476)

  • 1. Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal.
    Gonzalez-Contreras P; Weijma J; van der Weijden R; Buisman CJ
    Environ Sci Technol; 2010 Jan; 44(2):675-80. PubMed ID: 20017476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal.
    González-Contreras P; Weijma J; Buisman CJ
    Water Res; 2012 Nov; 46(18):5883-92. PubMed ID: 22960037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization.
    Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of arsenic as scorodite by a thermoacidophilic mixed culture via As(III)-catalyzed oxidation with activated carbon.
    Vega-Hernandez S; Weijma J; Buisman CJN
    J Hazard Mater; 2019 Apr; 368():221-227. PubMed ID: 30682541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in the bioremediation of arsenic-contaminated groundwater.
    Zouboulis AI; Katsoyiannis IA
    Environ Int; 2005 Feb; 31(2):213-9. PubMed ID: 15661286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of copper on the precipitation of scorodite (FeAsO4·2H2O) under hydrothermal conditions: evidence for a hydrated copper containing ferric arsenate sulfate-short lived intermediate.
    Gomez MA; Becze L; Celikin M; Demopoulos GP
    J Colloid Interface Sci; 2011 Aug; 360(2):508-18. PubMed ID: 21621789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation of arsenic in a thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi, and its culture medium by inductively coupled plasma-optical emission spectroscopy combined with flow injection pretreatment using an anion-exchange mini-column.
    Higashidani N; Kaneta T; Takeyasu N; Motomizu S; Okibe N; Sasaki K
    Talanta; 2014 May; 122():240-5. PubMed ID: 24720990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scorodite dissolution kinetics: implications for arsenic release.
    Harvey MC; Schreiber ME; Rimstidt JD; Griffith MM
    Environ Sci Technol; 2006 Nov; 40(21):6709-14. PubMed ID: 17144300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO(4)-Fe(II) process.
    Guan X; Ma J; Dong H; Jiang L
    Water Res; 2009 Dec; 43(20):5119-28. PubMed ID: 19201439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Fe(II)-induced transformation of scorodite on arsenic solubility.
    Zhou J; Liu Y; Bu H; Liu P; Sun J; Wu F; Hua J; Liu C
    J Hazard Mater; 2022 May; 429():128274. PubMed ID: 35066222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation.
    Hohmann C; Winkler E; Morin G; Kappler A
    Environ Sci Technol; 2010 Jan; 44(1):94-101. PubMed ID: 20039738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hematite-catalysed scorodite formation as a novel arsenic immobilisation strategy under ambient conditions.
    Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Ito M; Hiroyoshi N
    Chemosphere; 2019 Oct; 233():946-953. PubMed ID: 31340422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processes of attenuation of dissolved arsenic downstream from historic gold mine sites, New Zealand.
    Haffert L; Craw D
    Sci Total Environ; 2008 Nov; 405(1-3):286-300. PubMed ID: 18691740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE; Dupont RR; Sorensen DL
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic immobilization as alunite-type phases: the arsenate substitution in alunite and hydronium alunite.
    Sunyer A; Currubí M; Viñals J
    J Hazard Mater; 2013 Oct; 261():559-69. PubMed ID: 23994654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioremediation of highly toxic arsenic via carbon-fiber-assisted indirect As(III) oxidation by moderately-thermophilic, acidophilic Fe-oxidizing bacteria.
    Okibe N; Fukano Y
    Biotechnol Lett; 2019 Dec; 41(12):1403-1413. PubMed ID: 31655925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of sodium silicate-derived gels as encapsulants for hazardous materials--the case of scorodite.
    Adelman JG; Elouatik S; Demopoulos GP
    J Hazard Mater; 2015 Jul; 292():108-17. PubMed ID: 25797929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile.
    Amenabar MJ; Boyd ES
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.