BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20017497)

  • 1. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles.
    Zhang L; Laug L; Münchgesang W; Pippel E; Gösele U; Brandsch M; Knez M
    Nano Lett; 2010 Jan; 10(1):219-23. PubMed ID: 20017497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor-mediated cellular uptake of nanoparticles: a switchable delivery system.
    Zhang L; Fischer W; Pippel E; Hause G; Brandsch M; Knez M
    Small; 2011 Jun; 7(11):1538-41. PubMed ID: 21538872
    [No Abstract]   [Full Text] [Related]  

  • 3. Oxidative deterioration of platinum nanoparticle and its prevention by palladium.
    Okamoto H; Horii K; Fujisawa A; Yamamoto Y
    Exp Dermatol; 2012 Jul; 21 Suppl 1():5-7. PubMed ID: 22626463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-artificial and bioactive ferroxidase with nanoparticles as the active sites.
    Li L; Zhang L; Carmona U; Knez M
    Chem Commun (Camb); 2014 Jul; 50(59):8021-3. PubMed ID: 24918108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning, inhibiting and restoring the enzyme mimetic activities of Pt-apoferritin.
    Carmona U; Zhang L; Li L; Münchgesang W; Pippel E; Knez M
    Chem Commun (Camb); 2014 Jan; 50(6):701-3. PubMed ID: 24284378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles.
    Fan J; Yin JJ; Ning B; Wu X; Hu Y; Ferrari M; Anderson GJ; Wei J; Zhao Y; Nie G
    Biomaterials; 2011 Feb; 32(6):1611-8. PubMed ID: 21112084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From self-assembly of platinum nanoparticles to nanostructured materials.
    Surendran G; Apostolescu G; Tokumoto M; Prouzet E; Ramos L; Beaunier P; Kooyman PJ; Etcheberry A; Remita H
    Small; 2005 Oct; 1(10):964-7. PubMed ID: 17193378
    [No Abstract]   [Full Text] [Related]  

  • 8. Templated photocatalytic synthesis of well-defined platinum hollow nanostructures with enhanced catalytic performance for methanol oxidation.
    Bai F; Sun Z; Wu H; Haddad RE; Xiao X; Fan H
    Nano Lett; 2011 Sep; 11(9):3759-62. PubMed ID: 21853999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and activity of apoferritin-stabilized gold nanoparticles.
    Zhang L; Swift J; Butts CA; Yerubandi V; Dmochowski IJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1719-29. PubMed ID: 17723241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of thiol-capped FePt nanomagnetic porous particles.
    Gao X; Tam K; Yu KM; Tsang SC
    Small; 2005 Oct; 1(10):949-52. PubMed ID: 17193374
    [No Abstract]   [Full Text] [Related]  

  • 11. Biological synthesis of platinum nanoparticles with apoferritin.
    Deng QY; Yang B; Wang JF; Whiteley CG; Wang XN
    Biotechnol Lett; 2009 Oct; 31(10):1505-9. PubMed ID: 19504048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles.
    Laudenslager MJ; Schiffman JD; Schauer CL
    Biomacromolecules; 2008 Oct; 9(10):2682-5. PubMed ID: 18816099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen.
    Liu Y; Wu H; Li M; Yin JJ; Nie Z
    Nanoscale; 2014 Oct; 6(20):11904-10. PubMed ID: 25175625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bioinspired approach to the synthesis of bimetallic CoNi nanoparticles.
    Gálvez N; Valero E; Ceolin M; Trasobares S; López-Haro M; Calvino JJ; Domínguez-Vera JM
    Inorg Chem; 2010 Feb; 49(4):1705-11. PubMed ID: 20067250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of chemically synthesized FePt nanoparticles in water: core-shell silica/FePt nanocomposites.
    Salgueiriño-Maceira V; Correa-Duarte MA; Farle M
    Small; 2005 Nov; 1(11):1073-6. PubMed ID: 17193398
    [No Abstract]   [Full Text] [Related]  

  • 16. Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide.
    Bian X; Lu X; Jin E; Kong L; Zhang W; Wang C
    Talanta; 2010 May; 81(3):813-8. PubMed ID: 20298858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication via electrochemical oxidation of self-assembled monolayers and site-selective derivatization of surface templates.
    Hoeppener S; Schubert US
    Small; 2005 Jun; 1(6):628-32. PubMed ID: 17193497
    [No Abstract]   [Full Text] [Related]  

  • 18. Harnessing thermal expansion mismatch to form hollow nanoparticles.
    Jen-La Plante I; Mokari T
    Small; 2013 Jan; 9(1):56-60. PubMed ID: 23125049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure.
    Li Y; Lu Q; Wu S; Wang L; Shi X
    Biosens Bioelectron; 2013 Mar; 41():576-81. PubMed ID: 23062554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apoferritin-templated synthesis of metal phosphate nanoparticle labels for electrochemical immunoassay.
    Liu G; Wu H; Wang J; Lin Y
    Small; 2006 Oct; 2(10):1139-43. PubMed ID: 17193578
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.