BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

727 related articles for article (PubMed ID: 20017540)

  • 21. Insertion and assembly of membrane proteins via simulation.
    Bond PJ; Sansom MS
    J Am Chem Soc; 2006 Mar; 128(8):2697-704. PubMed ID: 16492056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proline-induced hinges in transmembrane helices: possible roles in ion channel gating.
    Tieleman DP; Shrivastava IH; Ulmschneider MR; Sansom MS
    Proteins; 2001 Aug; 44(2):63-72. PubMed ID: 11391769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics simulations of the transmembrane domain of the oncogenic ErbB2 receptor dimer in a DMPC bilayer.
    Garnier N; Crouzy S; Genest M
    J Biomol Struct Dyn; 2003 Oct; 21(2):179-200. PubMed ID: 12956604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer.
    Forrest LR; Tieleman DP; Sansom MS
    Biophys J; 1999 Apr; 76(4):1886-96. PubMed ID: 10096886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties.
    Cymer F; Veerappan A; Schneider D
    Biochim Biophys Acta; 2012 Apr; 1818(4):963-73. PubMed ID: 21827736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transmembrane helix association affinity can be modulated by flanking and noninterfacial residues.
    Zhang J; Lazaridis T
    Biophys J; 2009 Jun; 96(11):4418-27. PubMed ID: 19486666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into the recognition and association of transmembrane alpha-helices. The free energy of alpha-helix dimerization in glycophorin A.
    Hénin J; Pohorille A; Chipot C
    J Am Chem Soc; 2005 Jun; 127(23):8478-84. PubMed ID: 15941282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics (MD) investigations of preformed structures of the transmembrane domain of the oncogenic Neu receptor dimer in a DMPC bilayer.
    Aller P; Voiry L; Garnier N; Genest M
    Biopolymers; 2005 Mar; 77(4):184-97. PubMed ID: 15660449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling.
    Anbazhagan V; Schneider D
    Biochim Biophys Acta; 2010 Oct; 1798(10):1899-907. PubMed ID: 20603102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations.
    Han J; Pluhackova K; Wassenaar TA; Böckmann RA
    Biophys J; 2015 Aug; 109(4):760-71. PubMed ID: 26287628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions.
    Sulistijo ES; MacKenzie KR
    J Mol Biol; 2006 Dec; 364(5):974-90. PubMed ID: 17049556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of monotopic membrane enzymes with a lipid bilayer: a coarse-grained MD simulation study.
    Balali-Mood K; Bond PJ; Sansom MS
    Biochemistry; 2009 Mar; 48(10):2135-45. PubMed ID: 19161285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach.
    Wassenaar TA; Pluhackova K; Moussatova A; Sengupta D; Marrink SJ; Tieleman DP; Böckmann RA
    J Chem Theory Comput; 2015 May; 11(5):2278-91. PubMed ID: 26574426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multidimensional umbrella sampling and replica-exchange molecular dynamics simulations for structure prediction of transmembrane helix dimers.
    Li PC; Miyashita N; Im W; Ishido S; Sugita Y
    J Comput Chem; 2014 Feb; 35(4):300-8. PubMed ID: 24258786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane insertion of a voltage sensor helix.
    Wee CL; Chetwynd A; Sansom MS
    Biophys J; 2011 Jan; 100(2):410-9. PubMed ID: 21244837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into the transmembrane helix associations of kit ligand by molecular dynamics simulation and TOXCAT.
    Chai M; Liu B; Sun F; Wei P; Chen P; Xu L; Luo SZ
    Proteins; 2017 Jul; 85(7):1362-1370. PubMed ID: 28370370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-association of models of transmembrane domains of ErbB receptors in a lipid bilayer.
    Prakash A; Janosi L; Doxastakis M
    Biophys J; 2010 Dec; 99(11):3657-65. PubMed ID: 21112290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polar/Ionizable residues in transmembrane segments: effects on helix-helix packing.
    Bañó-Polo M; Baeza-Delgado C; Orzáez M; Marti-Renom MA; Abad C; Mingarro I
    PLoS One; 2012; 7(9):e44263. PubMed ID: 22984481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptable Lipid Matrix Promotes Protein-Protein Association in Membranes.
    Kuznetsov AS; Polyansky AA; Fleck M; Volynsky PE; Efremov RG
    J Chem Theory Comput; 2015 Sep; 11(9):4415-26. PubMed ID: 26575933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.