BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

728 related articles for article (PubMed ID: 20017540)

  • 41. Sidekick for Membrane Simulations: Automated Ensemble Molecular Dynamics Simulations of Transmembrane Helices.
    Hall BA; Halim KB; Buyan A; Emmanouil B; Sansom MS
    J Chem Theory Comput; 2014 May; 10(5):2165-75. PubMed ID: 26580541
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of the C-terminus of the glycophorin A transmembrane fragment on the dimerization process.
    Orzáez M; Pérez-Payá E; Mingarro I
    Protein Sci; 2000 Jun; 9(6):1246-53. PubMed ID: 10892817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations.
    Monticelli L; Tieleman DP; Fuchs PF
    Biophys J; 2010 Sep; 99(5):1455-64. PubMed ID: 20816057
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-assembling study of sarcolipin and its mutants in multiple molecular dynamic simulations.
    Cao Y; Wu X; Yang R; Wang X; Sun H; Lee I
    Proteins; 2017 Jun; 85(6):1065-1077. PubMed ID: 28241400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Systematic molecular dynamics searching in a lipid bilayer: application to the glycophorin A and oncogenic ErbB-2 transmembrane domains.
    Beevers AJ; Kukol A
    J Mol Graph Model; 2006 Oct; 25(2):226-33. PubMed ID: 16434222
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transmembrane helices containing a charged arginine are thermodynamically stable.
    Ulmschneider MB; Ulmschneider JP; Freites JA; von Heijne G; Tobias DJ; White SH
    Eur Biophys J; 2017 Oct; 46(7):627-637. PubMed ID: 28409218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental and Molecular Dynamics Simulation Study of the Effects of Lignin Dimers on the Gel-to-Fluid Phase Transition in DPPC Bilayers.
    Tong X; Moradipour M; Novak B; Kamali P; Asare SO; Knutson BL; Rankin SE; Lynn BC; Moldovan D
    J Phys Chem B; 2019 Oct; 123(39):8247-8260. PubMed ID: 31487181
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel scoring function for predicting the conformations of tightly packed pairs of transmembrane alpha-helices.
    Fleishman SJ; Ben-Tal N
    J Mol Biol; 2002 Aug; 321(2):363-78. PubMed ID: 12144792
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combination of Cα-H Hydrogen Bonds and van der Waals Packing Modulates the Stability of GxxxG-Mediated Dimers in Membranes.
    Anderson SM; Mueller BK; Lange EJ; Senes A
    J Am Chem Soc; 2017 Nov; 139(44):15774-15783. PubMed ID: 29028318
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.
    Park Y; Helms V
    Proteins; 2006 Sep; 64(4):895-905. PubMed ID: 16807902
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulations of the BM2 proton channel transmembrane domain from influenza virus B.
    Rouse SL; Carpenter T; Stansfeld PJ; Sansom MS
    Biochemistry; 2009 Oct; 48(42):9949-51. PubMed ID: 19780586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanistic Insights into Pore Formation by an α-Pore Forming Toxin: Protein and Lipid Bilayer Interactions of Cytolysin A.
    Sathyanarayana P; Visweswariah SS; Ayappa KG
    Acc Chem Res; 2021 Jan; 54(1):120-131. PubMed ID: 33291882
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular dynamics simulations of homo-oligomeric bundles embedded within a lipid bilayer.
    Nguyen TH; Liu Z; Moore PB
    Biophys J; 2013 Oct; 105(7):1569-80. PubMed ID: 24094398
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ca2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions.
    Lee AG
    Biochim Biophys Acta; 2002 Oct; 1565(2):246-66. PubMed ID: 12409199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomistic mechanism of transmembrane helix association.
    Domański J; Sansom MSP; Stansfeld PJ; Best RB
    PLoS Comput Biol; 2020 Jun; 16(6):e1007919. PubMed ID: 32497094
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations.
    Lelimousin M; Limongelli V; Sansom MS
    J Am Chem Soc; 2016 Aug; 138(33):10611-22. PubMed ID: 27459426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of GxxxG Motifs in Transmembrane Domain Interactions.
    Teese MG; Langosch D
    Biochemistry; 2015 Aug; 54(33):5125-35. PubMed ID: 26244771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer.
    Bond PJ; Wee CL; Sansom MS
    Biochemistry; 2008 Oct; 47(43):11321-31. PubMed ID: 18831536
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transmembrane helices can induce domain formation in crowded model membranes.
    Domański J; Marrink SJ; Schäfer LV
    Biochim Biophys Acta; 2012 Apr; 1818(4):984-94. PubMed ID: 21884678
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins.
    Im W; Feig M; Brooks CL
    Biophys J; 2003 Nov; 85(5):2900-18. PubMed ID: 14581194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.