These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 20017551)

  • 1. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing.
    Liu N; Weiss T; Mesch M; Langguth L; Eigenthaler U; Hirscher M; Sönnichsen C; Giessen H
    Nano Lett; 2010 Apr; 10(4):1103-7. PubMed ID: 20017551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency.
    Dong ZG; Liu H; Xu MX; Li T; Wang SM; Cao JX; Zhu SN; Zhang X
    Opt Express; 2010 Oct; 18(21):22412-7. PubMed ID: 20941141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetically induced transparency in metamaterials at near-infrared frequency.
    Zhang J; Xiao S; Jeppesen C; Kristensen A; Mortensen NA
    Opt Express; 2010 Aug; 18(16):17187-92. PubMed ID: 20721107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromagnetically induced transparency in hybrid plasmonic-dielectric system.
    Tang B; Dai L; Jiang C
    Opt Express; 2011 Jan; 19(2):628-37. PubMed ID: 21263602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal scaling of the figure of merit of plasmonic sensors.
    Offermans P; Schaafsma MC; Rodriguez SR; Zhang Y; Crego-Calama M; Brongersma SH; Gómez Rivas J
    ACS Nano; 2011 Jun; 5(6):5151-7. PubMed ID: 21574624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor.
    Ren W; Dai Y; Cai H; Ding H; Pan N; Wang X
    Opt Express; 2013 Apr; 21(8):10251-8. PubMed ID: 23609734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application.
    Zhu L; Dong L; Meng FY; Fu JH; Wu Q
    Appl Opt; 2012 Nov; 51(32):7794-9. PubMed ID: 23142892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance.
    Chen CY; Un IW; Tai NH; Yen TJ
    Opt Express; 2009 Aug; 17(17):15372-80. PubMed ID: 19688015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon microcavity for resonant transmission through a slit in a gold film.
    Min Q; Gordon R
    Opt Express; 2008 Jun; 16(13):9708-13. PubMed ID: 18575539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling spontaneous emission with plasmonic optical patch antennas.
    Belacel C; Habert B; Bigourdan F; Marquier F; Hugonin JP; de Vasconcellos SM; Lafosse X; Coolen L; Schwob C; Javaux C; Dubertret B; Greffet JJ; Senellart P; Maitre A
    Nano Lett; 2013 Apr; 13(4):1516-21. PubMed ID: 23461679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel planar metamaterial design for electromagnetically induced transparency and slow light.
    Wang J; Yuan B; Fan C; He J; Ding P; Xue Q; Liang E
    Opt Express; 2013 Oct; 21(21):25159-66. PubMed ID: 24150357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipole induced transparency in waveguide coupled photonic crystal cavities.
    Faraon A; Fushman I; Englund D; Stoltz N; Petroff P; Vucković J
    Opt Express; 2008 Aug; 16(16):12154-62. PubMed ID: 18679491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime.
    Wurtz GA; Dickson W; O'Connor D; Atkinson R; Hendren W; Evans P; Pollard R; Zayats AV
    Opt Express; 2008 May; 16(10):7460-70. PubMed ID: 18545451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial.
    Hu WQ; Liang EJ; Ding P; Cai GW; Xue QZ
    Opt Express; 2009 Nov; 17(24):21843-9. PubMed ID: 19997429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules.
    Chen WT; Chen CJ; Wu PC; Sun S; Zhou L; Guo GY; Hsiao CT; Yang KY; Zheludev NI; Tsai DP
    Opt Express; 2011 Jun; 19(13):12837-42. PubMed ID: 21716526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor.
    Wu D; Liu Y; Yu L; Yu Z; Chen L; Li R; Ma R; Liu C; Zhang J; Ye H
    Sci Rep; 2017 Mar; 7():45210. PubMed ID: 28332629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional plasmonic nanocircuits with low insertion and propagation losses.
    Kriesch A; Burgos SP; Ploss D; Pfeifer H; Atwater HA; Peschel U
    Nano Lett; 2013 Sep; 13(9):4539-45. PubMed ID: 23962146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoporous gold plasmonic structures for sensing applications.
    Ruffato G; Romanato F; Garoli D; Cattarin S
    Opt Express; 2011 Jul; 19(14):13164-70. PubMed ID: 21747470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of large-area patterned nanostructures for optical applications by nanoskiving.
    Xu Q; Bao J; Rioux RM; Perez-Castillejos R; Capasso F; Whitesides GM
    Nano Lett; 2007 Sep; 7(9):2800-5. PubMed ID: 17665964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetry breaking and strong coupling in planar optical metamaterials.
    Aydin K; Pryce IM; Atwater HA
    Opt Express; 2010 Jun; 18(13):13407-17. PubMed ID: 20588471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.