These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 20017569)

  • 1. Thermus thermophilus proteins that are differentially expressed in response to growth temperature and their implication in thermoadaptation.
    Li H; Ji X; Zhou Z; Wang Y; Zhang X
    J Proteome Res; 2010 Feb; 9(2):855-64. PubMed ID: 20017569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
    Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K
    J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteins of Thermus thermophilus are resistant to glycation-induced protein precipitation: an evolutionary adaptation to life at extreme temperatures?
    Münch G; Berbaum K; Urban C; Schinzel R
    Ann N Y Acad Sci; 2005 Jun; 1043():865-75. PubMed ID: 16037313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the interaction between superoxide dismutase and 2-oxoisovalerate dehydrogenase.
    Song C; Li H; Sheng L; Zhang X
    Gene; 2015 Aug; 568(1):1-7. PubMed ID: 25958347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus.
    Averhoff B
    FEMS Microbiol Rev; 2009 May; 33(3):611-26. PubMed ID: 19207744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile.
    Trauger SA; Kalisak E; Kalisiak J; Morita H; Weinberg MV; Menon AL; Poole FL; Adams MW; Siuzdak G
    J Proteome Res; 2008 Mar; 7(3):1027-35. PubMed ID: 18247545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent regulation of Thermus thermophilus DnaK/DnaJ chaperones by DafA protein.
    Mizutani T; Nemoto S; Yoshida M; Watanabe YH
    Genes Cells; 2009 Dec; 14(12):1405-13. PubMed ID: 19930469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions.
    Agoston R; Soni K; Jesudhasan PR; Russell WK; Mohácsi-Farkas C; Pillai SD
    Foodborne Pathog Dis; 2009 Nov; 6(9):1133-40. PubMed ID: 19694553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chaperonin from a thermophilic bacterium, Thermus thermophilus.
    Yoshida M; Ishii N; Muneyuki E; Taguchi H
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1289):305-12. PubMed ID: 8098535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-cell proteome reference maps of an extreme thermophile, Thermus thermophilus HB8.
    Kim K; Okanishi H; Masui R; Harada A; Ueyama N; Kuramitsu S
    Proteomics; 2012 Oct; 12(19-20):3063-8. PubMed ID: 22887638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique polyamines produced by an extreme thermophile, Thermus thermophilus.
    Oshima T
    Amino Acids; 2007 Aug; 33(2):367-72. PubMed ID: 17429571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27.
    Schwarzenlander C; Averhoff B
    FEBS J; 2006 Sep; 273(18):4210-8. PubMed ID: 16939619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology.
    Cava F; de Pedro MA; Blas-Galindo E; Waldo GS; Westblade LF; Berenguer J
    Environ Microbiol; 2008 Mar; 10(3):605-13. PubMed ID: 18190515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27.
    Rumszauer J; Schwarzenlander C; Averhoff B
    FEBS J; 2006 Jul; 273(14):3261-72. PubMed ID: 16857013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proteomic approach in analyzing heat-responsive proteins in rice leaves.
    Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH
    Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis on the temperature-dependent complexes in Thermoanaerobacter tengcongensis.
    Meng B; Qian Z; Wei F; Wang W; Zhou C; Wang Z; Wang Q; Tong W; Wang Q; Ma Y; Xu N; Liu S
    Proteomics; 2009 Jun; 9(11):3189-200. PubMed ID: 19526551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a thermophilic GrpE protein: insight into thermosensing function for the DnaK chaperone system.
    Nakamura A; Takumi K; Miki K
    J Mol Biol; 2010 Mar; 396(4):1000-11. PubMed ID: 20036249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermodynamic comparison of mesophilic and thermophilic ribonucleases H.
    Hollien J; Marqusee S
    Biochemistry; 1999 Mar; 38(12):3831-6. PubMed ID: 10090773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and regulatory properties of a respiratory island encoded by a conjugative plasmid in the extreme thermophile Thermus thermophilus.
    Cava F; Berenguer J
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):97-100. PubMed ID: 16417492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential proteomic analysis in the study of prokaryotes stress resistance.
    Renzone G; D'Ambrosio C; Arena S; Rullo R; Ledda L; Ferrara L; Scaloni A
    Ann Ist Super Sanita; 2005; 41(4):459-68. PubMed ID: 16569914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.