BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 20017731)

  • 1. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans.
    Sharma M; Manoharlal R; Puri N; Prasad R
    Biosci Rep; 2010 Dec; 30(6):391-404. PubMed ID: 20017731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis.
    Sharma M; Manoharlal R; Negi AS; Prasad R
    FEMS Yeast Res; 2010 Aug; 10(5):570-8. PubMed ID: 20528949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Baicalein induces programmed cell death in Candida albicans.
    Dai BD; Cao YY; Huang S; Xu YG; Gao PH; Wang Y; Jiang YY
    J Microbiol Biotechnol; 2009 Aug; 19(8):803-9. PubMed ID: 19734718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans.
    Prasad T; Hameed S; Manoharlal R; Biswas S; Mukhopadhyay CK; Goswami SK; Prasad R
    FEMS Yeast Res; 2010 Aug; 10(5):587-96. PubMed ID: 20491944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans.
    Sigle HC; Thewes S; Niewerth M; Korting HC; Schäfer-Korting M; Hube B
    J Antimicrob Chemother; 2005 May; 55(5):663-73. PubMed ID: 15790671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2-amino-nonyl-6-methoxyl-tetralin muriate activity against Candida albicans augments endogenous reactive oxygen species production --a microarray analysis study.
    Liang RM; Yong XL; Jiang YP; Tan YH; Dai BD; Wang SH; Hu TT; Chen X; Li N; Dong ZH; Huang XC; Chen J; Cao YB; Jiang YY
    FEBS J; 2011 Apr; 278(7):1075-85. PubMed ID: 21251230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans.
    Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis.
    Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ
    Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans.
    Alonso-Monge R; Román E; Arana DM; Prieto D; Urrialde V; Nombela C; Pla J
    Fungal Genet Biol; 2010 Jul; 47(7):587-601. PubMed ID: 20388546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance.
    Dib L; Hayek P; Sadek H; Beyrouthy B; Khalaf RA
    Med Sci Monit; 2008 Jun; 14(6):BR113-121. PubMed ID: 18509269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis.
    Zeng YB; Qian YS; Ma L; Gu HN
    Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungicidal activity of miconazole against Candida spp. biofilms.
    Vandenbosch D; Braeckmans K; Nelis HJ; Coenye T
    J Antimicrob Chemother; 2010 Apr; 65(4):694-700. PubMed ID: 20130024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ
    Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans.
    Hwang B; Hwang JS; Lee J; Lee DG
    Biochem Biophys Res Commun; 2011 Feb; 405(2):267-71. PubMed ID: 21219857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalase gene disruptant of the human pathogenic yeast Candida albicans is defective in hyphal growth, and a catalase-specific inhibitor can suppress hyphal growth of wild-type cells.
    Nakagawa Y
    Microbiol Immunol; 2008 Jan; 52(1):16-24. PubMed ID: 18352908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of oxidative stress tolerance resulted in reduced ability to undergo morphologic transitions and decreased pathogenicity in a t-butylhydroperoxide-tolerant mutant of Candida albicans.
    Fekete A; Emri T; Gyetvai A; Gazdag Z; Pesti M; Varga Z; Balla J; Cserháti C; Emody L; Gergely L; Pócsi I
    FEMS Yeast Res; 2007 Sep; 7(6):834-47. PubMed ID: 17498215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans.
    Maurya IK; Pathak S; Sharma M; Sanwal H; Chaudhary P; Tupe S; Deshpande M; Chauhan VS; Prasad R
    Peptides; 2011 Aug; 32(8):1732-40. PubMed ID: 21693143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress induced by piperine leads to apoptosis in Candida albicans.
    Thakre A; Jadhav V; Kazi R; Shelar A; Patil R; Kharat K; Zore G; Karuppayil SM
    Med Mycol; 2021 Apr; 59(4):366-378. PubMed ID: 32658959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The possible mechanism of rhapontigenin influencing antifungal activity on Candida albicans.
    Kim N; Kim JK; Hwang D; Lim YH
    Med Mycol; 2013 Jan; 51(1):45-52. PubMed ID: 22662760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New evidence that Candida albicans possesses additional ATP-binding cassette MDR-like genes: implications for antifungal azole resistance.
    Walsh TJ; Kasai M; Francesconi A; Landsman D; Chanock SJ
    J Med Vet Mycol; 1997; 35(2):133-7. PubMed ID: 9147273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.