These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 20017939)
1. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. Staubli P; Nef T; Klamroth-Marganska V; Riener R J Neuroeng Rehabil; 2009 Dec; 6():46. PubMed ID: 20017939 [TBL] [Abstract][Full Text] [Related]
2. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. Milot MH; Spencer SJ; Chan V; Allington JP; Klein J; Chou C; Bobrow JE; Cramer SC; Reinkensmeyer DJ J Neuroeng Rehabil; 2013 Dec; 10():112. PubMed ID: 24354476 [TBL] [Abstract][Full Text] [Related]
3. Robot-Assisted Arm Training in Chronic Stroke: Addition of Transition-to-Task Practice. Conroy SS; Wittenberg GF; Krebs HI; Zhan M; Bever CT; Whitall J Neurorehabil Neural Repair; 2019 Sep; 33(9):751-761. PubMed ID: 31328671 [No Abstract] [Full Text] [Related]
4. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Klamroth-Marganska V; Blanco J; Campen K; Curt A; Dietz V; Ettlin T; Felder M; Fellinghauer B; Guidali M; Kollmar A; Luft A; Nef T; Schuster-Amft C; Stahel W; Riener R Lancet Neurol; 2014 Feb; 13(2):159-66. PubMed ID: 24382580 [TBL] [Abstract][Full Text] [Related]
5. Reaching exercise for chronic paretic upper extremity after stroke using a novel rehabilitation robot with arm-weight support and concomitant electrical stimulation and vibration: before-and-after feasibility trial. Amano Y; Noma T; Etoh S; Miyata R; Kawamura K; Shimodozono M Biomed Eng Online; 2020 May; 19(1):28. PubMed ID: 32375788 [TBL] [Abstract][Full Text] [Related]
6. Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases. Nef T; Quinter G; Müller R; Riener R Neurodegener Dis; 2009; 6(5-6):240-51. PubMed ID: 19940461 [TBL] [Abstract][Full Text] [Related]
7. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Veerbeek JM; Langbroek-Amersfoort AC; van Wegen EE; Meskers CG; Kwakkel G Neurorehabil Neural Repair; 2017 Feb; 31(2):107-121. PubMed ID: 27597165 [TBL] [Abstract][Full Text] [Related]
8. Robot-Assisted Reach Training With an Active Assistant Protocol for Long-Term Upper Extremity Impairment Poststroke: A Randomized Controlled Trial. Cho KH; Song WK Arch Phys Med Rehabil; 2019 Feb; 100(2):213-219. PubMed ID: 30686326 [TBL] [Abstract][Full Text] [Related]
9. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke. Hu XL; Tong RK; Ho NS; Xue JJ; Rong W; Li LS Neurorehabil Neural Repair; 2015 Sep; 29(8):767-76. PubMed ID: 25549656 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial. Susanto EA; Tong RK; Ockenfeld C; Ho NS J Neuroeng Rehabil; 2015 Apr; 12():42. PubMed ID: 25906983 [TBL] [Abstract][Full Text] [Related]
11. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Lum PS; Burgar CG; Shor PC; Majmundar M; Van der Loos M Arch Phys Med Rehabil; 2002 Jul; 83(7):952-9. PubMed ID: 12098155 [TBL] [Abstract][Full Text] [Related]
12. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. Otaka E; Otaka Y; Kasuga S; Nishimoto A; Yamazaki K; Kawakami M; Ushiba J; Liu M J Neuroeng Rehabil; 2015 Aug; 12():66. PubMed ID: 26265327 [TBL] [Abstract][Full Text] [Related]
13. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy. Squeri V; Masia L; Giannoni P; Sandini G; Morasso P IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271 [TBL] [Abstract][Full Text] [Related]
14. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181 [TBL] [Abstract][Full Text] [Related]
15. Robotic-assisted rehabilitation of the upper limb after acute stroke. Masiero S; Celia A; Rosati G; Armani M Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510 [TBL] [Abstract][Full Text] [Related]
16. Effects of robot therapy on upper body kinematics and arm function in persons post stroke: a pilot randomized controlled trial. Carpinella I; Lencioni T; Bowman T; Bertoni R; Turolla A; Ferrarin M; Jonsdottir J J Neuroeng Rehabil; 2020 Jan; 17(1):10. PubMed ID: 32000790 [TBL] [Abstract][Full Text] [Related]
17. Effects of an assist-as-needed equipped Tenodesis-Induced-Grip Exoskeleton Robot (TIGER) on upper limb function in patients with chronic stroke. Hsu HY; Koh CL; Yang KC; Lin YC; Hsu CH; Su FC; Kuo LC J Neuroeng Rehabil; 2024 Jan; 21(1):5. PubMed ID: 38173006 [TBL] [Abstract][Full Text] [Related]
18. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. Hu XL; Tong KY; Song R; Zheng XJ; Lui KH; Leung WW; Ng S; Au-Yeung SS J Electromyogr Kinesiol; 2009 Aug; 19(4):639-50. PubMed ID: 18490177 [TBL] [Abstract][Full Text] [Related]
19. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Hesse S; Schulte-Tigges G; Konrad M; Bardeleben A; Werner C Arch Phys Med Rehabil; 2003 Jun; 84(6):915-20. PubMed ID: 12808550 [TBL] [Abstract][Full Text] [Related]
20. Robot-Assisted Reach Training for Improving Upper Extremity Function of Chronic Stroke. Cho KH; Song WK Tohoku J Exp Med; 2015 Oct; 237(2):149-55. PubMed ID: 26460793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]