BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 200181)

  • 1. Different contribution of rat liver microsomal pigments in the formation of superoxide anions and hydrogen peroxide during development.
    Bartoli GM; Galeotti T; Palombini G; Parisi G; Azzi A
    Arch Biochem Biophys; 1977 Nov; 184(1):276-81. PubMed ID: 200181
    [No Abstract]   [Full Text] [Related]  

  • 2. Phenobarbital-induced increase of NADH-cytochrome b5 reductase activity in rat liver microsomes.
    De Barros AV; Kaplan JC; Duvaldestin P; Berthelot P
    Biochem Pharmacol; 1978 Feb; 27(3):367-8. PubMed ID: 619920
    [No Abstract]   [Full Text] [Related]  

  • 3. Mixed function oxidase and ethanol metabolism in perfused rat liver.
    Hassinen IE; Ylikahri RH
    Science; 1972 Jun; 176(4042):1435-7. PubMed ID: 5033652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of a tyrosine-divalent copper complex on hepatic microsomal demethylation.
    Richter C; Azzi A; Wendel A
    FEBS Lett; 1976 May; 64(2):332-7. PubMed ID: 179884
    [No Abstract]   [Full Text] [Related]  

  • 5. The liver-protective enzymes against reduced forms of oxygen in phenobarbital-treated rats.
    Torres M; Järvisalo J; Hakim J
    Enzyme; 1981; 26(3):129-35. PubMed ID: 6265203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxycytochrome P-450: its breakdown to superoxide for the formation of hydrogen peroxide.
    Estabrook RW; Kawano S; Werringloer J; Kuthan H; Tsuji H; Graf H; Ullrich V
    Acta Biol Med Ger; 1979; 38(2-3):423-34. PubMed ID: 229682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions.
    Mishin V; Pokrovsky A; Lyakhovich VV
    Biochem J; 1976 Feb; 154(2):307-10. PubMed ID: 7236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete stoichiometry of free NADPH oxidation in liver microsomes.
    Zhukov AA; Archakov AI
    Biochem Biophys Res Commun; 1982 Dec; 109(3):813-8. PubMed ID: 6297491
    [No Abstract]   [Full Text] [Related]  

  • 9. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Changes in NADH-cytochrome c reductase activity following phenobarbital treatment.
    Starón K; Kaniuga Z
    Acta Biochim Pol; 1974; 21(1):61-6. PubMed ID: 4364831
    [No Abstract]   [Full Text] [Related]  

  • 10. Nitrofuran enhancement of microsomal electron transport, superoxide anion production and lipid peroxidation.
    Docampo R; Moreno SN; Stoppani AO
    Arch Biochem Biophys; 1981 Apr; 207(2):316-24. PubMed ID: 6264859
    [No Abstract]   [Full Text] [Related]  

  • 11. Liver microsomal electron transport systems. III. The involvement of cytochrome b5 in the NADPH-supported cytochrome P-450-dependent hydroxylation of chlorobenzene.
    Lu AY; Levin W; Selander H; Jerina DM
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1348-55. PubMed ID: 4156173
    [No Abstract]   [Full Text] [Related]  

  • 12. Induction of liver microsomal drug metabolism in newly-hatched chicks.
    Jondorf WR; MacIntyre DE; Powis G
    Br J Pharmacol; 1973 Mar; 47(3):624P-625P. PubMed ID: 4147194
    [No Abstract]   [Full Text] [Related]  

  • 13. AD 5, a dehydroalanine derivative, decreases the amount of reactive oxygen species formed during nitrofurantion microsomal metabolism.
    Buc-Calderon P; Roberfroid M
    Life Sci; 1990; 46(3):207-15. PubMed ID: 2154650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate-limiting step in the reconstituted microsomal drug hydroxylase system.
    Imai Y; Sato R; Iyanagi T
    J Biochem; 1977 Nov; 82(5):1237-46. PubMed ID: 412842
    [No Abstract]   [Full Text] [Related]  

  • 15. Influence of fasting and hemin on microsomal cytochromes and enzymes.
    Bock KW; Fröhling W; Remmer H
    Biochem Pharmacol; 1973 Jul; 22(13):1557-64. PubMed ID: 4354122
    [No Abstract]   [Full Text] [Related]  

  • 16. Primary toxic effects of anthraquinone-2-sulfonic acid in rat liver microsomes.
    Leskovac V; Trivić S; Peggins JO
    Toxicol Lett; 1995 Jul; 78(2):107-10. PubMed ID: 7618176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oxygen sensing characteristics of microsomal enzymes.
    Estabrook RW; Werringloer J
    Adv Exp Med Biol; 1977; 78():19-35. PubMed ID: 19937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic and spectrophotometric properties of the microsomal carbon monoxide binding pigment.
    Ichikawa Y; Hagihara B; Yamano T
    Arch Biochem Biophys; 1967 Apr; 120(1):204-13. PubMed ID: 4383012
    [No Abstract]   [Full Text] [Related]  

  • 19. The influence of phenobarbital on the turnover of hepatic microsomal cytochrome b5 and cytochrome P-450 hemes in the rat.
    Greim H; Schenkman JB; Klotzbücher M; Remmer H
    Biochim Biophys Acta; 1970 Jan; 201(1):20-5. PubMed ID: 5412508
    [No Abstract]   [Full Text] [Related]  

  • 20. Factors affecting the intracellular generation of free radicals from quinones.
    Powis G; Svingen BA; Appel P
    Adv Exp Med Biol; 1981; 136 Pt A():349-58. PubMed ID: 6283813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.