These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20018206)

  • 21. Macromolecular crystallization in microgravity generated by a superconducting magnet.
    Wakayama NI; Yin DC; Harata K; Kiyoshi T; Fujiwara M; Tanimoto Y
    Ann N Y Acad Sci; 2006 Sep; 1077():184-93. PubMed ID: 17124123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein crystallization: from HTS to kilogram-scale.
    Klyushnichenko V
    Curr Opin Drug Discov Devel; 2003 Nov; 6(6):848-54. PubMed ID: 14758756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics and mechanisms of protein crystallization at the molecular level.
    Vekilov PG
    Methods Mol Biol; 2005; 300():15-52. PubMed ID: 15657478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein purification by bulk crystallization: the recovery of ovalbumin.
    Judge RA; Johns MR; White ET
    Biotechnol Bioeng; 1995 Nov; 48(4):316-23. PubMed ID: 18623492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beneficial effect of solubility enhancers on protein crystal nucleation and growth.
    Gosavi RA; Bhamidi V; Varanasi S; Schall CA
    Langmuir; 2009 Apr; 25(8):4579-87. PubMed ID: 19309115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth and characterization of high-quality protein crystals for X-ray crystallography.
    Moreno A; Yokaichiya F; Dimasi E; Stojanoff V
    Ann N Y Acad Sci; 2009 Apr; 1161():429-36. PubMed ID: 19426336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of buoyancy-driven convection on nucleation and growth of protein crystals.
    Nanev CN; Penkova A; Chayen N
    Ann N Y Acad Sci; 2004 Nov; 1027():1-9. PubMed ID: 15644340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystallizing proteins on the basis of their precipitation diagram determined using a microfluidic formulator.
    Sommer MO; Larsen S
    J Synchrotron Radiat; 2005 Nov; 12(Pt 6):779-85. PubMed ID: 16239748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination.
    Hansen CL; Classen S; Berger JM; Quake SR
    J Am Chem Soc; 2006 Mar; 128(10):3142-3. PubMed ID: 16522084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein crystal growth in microgravity using a liquid/liquid diffusion method.
    Wang YP; Han Y; Pan JS; Wang KY; Bi RC
    Microgravity Sci Technol; 1996; 9(4):281-3. PubMed ID: 11540170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal quality enhancement by magnetic fields.
    Sazaki G
    Prog Biophys Mol Biol; 2009 Nov; 101(1-3):45-55. PubMed ID: 20036684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform.
    Talreja S; Kenis PJ; Zukoski CF
    Langmuir; 2007 Apr; 23(8):4516-22. PubMed ID: 17367178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal growth in X-ray-transparent plastic tubing: an alternative for high-throughput applications.
    Kalinin Y; Thorne R
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1528-32. PubMed ID: 16239731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increasing protein crystallization screening success with heterogeneous nucleating agents.
    Thakur AS; Newman J; Martin JL; Kobe B
    Methods Mol Biol; 2008; 426():403-9. PubMed ID: 18542879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repair of impurity-poisoned protein crystal surfaces.
    Plomp M; McPherson A; Malkin AJ
    Proteins; 2003 Feb; 50(3):486-95. PubMed ID: 12557190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards a 'universal' nucleant for protein crystallization.
    Saridakis E; Chayen NE
    Trends Biotechnol; 2009 Feb; 27(2):99-106. PubMed ID: 19110330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of self-interaction chromatography in stable formulation and crystallization of proteins.
    Deshpande KS; Ahamed T; ter Horst JH; Jansens PJ; van der Wielen LA; Ottens M
    Biotechnol J; 2009 Sep; 4(9):1266-77. PubMed ID: 19585537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein crystal nucleation: is the pair interaction potential the primary determinant of kinetics?
    Bhamidi V; Varanasi S; Schall CA
    Langmuir; 2005 Sep; 21(20):9044-50. PubMed ID: 16171331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.
    Zheng B; Roach LS; Ismagilov RF
    J Am Chem Soc; 2003 Sep; 125(37):11170-1. PubMed ID: 16220918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleant-mediated protein crystallization with the application of microporous synthetic zeolites.
    Sugahara M; Asada Y; Morikawa Y; Kageyama Y; Kunishima N
    Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):686-95. PubMed ID: 18560157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.