BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20018444)

  • 1. Modeling solid thermal explosion containment on reactor HNIW and HMX.
    Lin CP; Chang CP; Chou YC; Chu YC; Shu CM
    J Hazard Mater; 2010 Apr; 176(1-3):549-58. PubMed ID: 20018444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.
    Song X; Wang Y; An C; Guo X; Li F
    J Hazard Mater; 2008 Nov; 159(2-3):222-9. PubMed ID: 18353546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.
    Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM
    J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates.
    Balakrishnan VK; Halasz A; Hawari J
    Environ Sci Technol; 2003 May; 37(9):1838-43. PubMed ID: 12775055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles study of the four polymorphs of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.
    Zhu W; Xiao J; Ji G; Zhao F; Xiao H
    J Phys Chem B; 2007 Nov; 111(44):12715-22. PubMed ID: 17929963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray transmission movies of spontaneous dynamic events.
    Smilowitz L; Henson BF; Holmes M; Novak A; Oschwald D; Dolgonos P; Qualls B
    Rev Sci Instrum; 2014 Nov; 85(11):113904. PubMed ID: 25430121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance.
    Pang WQ; Wang K; Zhang W; Luca LT; Fan XZ; Li JQ
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32962224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state modeling of the terahertz spectrum of the high explosive HMX.
    Allis DG; Prokhorova DA; Korter TM
    J Phys Chem A; 2006 Feb; 110(5):1951-9. PubMed ID: 16451029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An exploratory approach to modeling explosive compound persistence and flux using dissolution kinetics.
    Lynch JC; Brannon JM; Hatfield K; Delfino JJ
    J Contam Hydrol; 2003 Nov; 66(3-4):147-59. PubMed ID: 14568396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTOxDNAZ.
    Ma H; Yan B; Li Z; Guan Y; Song J; Xu K; Hu R
    J Hazard Mater; 2009 Sep; 169(1-3):1068-73. PubMed ID: 19446396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal reactive hazards of HMX with contaminants.
    Peng DJ; Chang CM; Chiu M
    J Hazard Mater; 2004 Oct; 114(1-3):1-13. PubMed ID: 15511569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational properties, phonon spectrum and related thermal parameters of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: a theoretical study.
    Qian W; Zhang W; Zong H; Gao G; Zhou Y; Zhang C
    J Mol Model; 2016 Jan; 22(1):9. PubMed ID: 26669878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions.
    Wang C; Fuller ME; Schaefer C; Caplan JL; Jin Y
    J Hazard Mater; 2012 May; 217-218():187-93. PubMed ID: 22480704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-isothermal thermal decomposition reaction kinetics of 2-nitroimino-5-nitro-hexahydro-1,3,5-triazine (NNHT).
    Zhang JQ; Gao HX; Su LH; Hu RZ; Zhao FQ; Wang BZ
    J Hazard Mater; 2009 Aug; 167(1-3):205-8. PubMed ID: 19185997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials.
    Yan QL; Xiao-Jiang L; La-Ying Z; Ji-Zhen L; Hong-Li L; Zi-Ru L
    J Hazard Mater; 2008 Dec; 160(2-3):529-34. PubMed ID: 18434010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical investigation on the heats of formation and detonation performance in polydinitroaminocubanes.
    Chi W; Wang X; Li B; Wu H
    J Mol Model; 2012 Sep; 18(9):4217-23. PubMed ID: 22552754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications.
    Chi JH; Wu SH; Shu CM
    J Hazard Mater; 2009 Nov; 171(1-3):1145-9. PubMed ID: 19619941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruminal bioremediation of the high energy melting explosive (HMX) by sheep microorganisms.
    Eaton HL; Murty LD; Duringer JM; Craig AM
    FEMS Microbiol Lett; 2014 Jan; 350(1):34-41. PubMed ID: 24164342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous solubility and alkaline hydrolysis of the novel high explosive hexanitrohexaazaisowurtzitane (CL-20).
    Karakaya P; Sidhoum M; Christodoulatos C; Nicolich S; Balas W
    J Hazard Mater; 2005 Apr; 120(1-3):183-91. PubMed ID: 15811680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of mesophilic anaerobic granules for removal of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from aqueous solution.
    An CJ; He YL; Huang GH; Liu YH
    J Hazard Mater; 2010 Jul; 179(1-3):526-32. PubMed ID: 20359815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.