These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 20018448)

  • 21. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extraction of nickel from spent catalyst using fresh and recovered EDTA.
    Goel S; Pant KK; Nigam KD
    J Hazard Mater; 2009 Nov; 171(1-3):253-61. PubMed ID: 19553011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective recovery of Mo, Co and Al from spent Co/Mo/gamma-Al2O3 catalyst: effect of calcination temperature.
    Mohapatra D; Park KH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Mar; 42(4):507-15. PubMed ID: 17365321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process.
    Lai YC; Lee WJ; Huang KL; Wu CM
    J Hazard Mater; 2008 Jun; 154(1-3):588-94. PubMed ID: 18060691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries.
    Rabah MA; Farghaly FE; Abd-El Motaleb MA
    Waste Manag; 2008; 28(7):1159-67. PubMed ID: 17714929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal leaching from refinery waste hydroprocessing catalyst.
    Marafi M; Rana MS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):951-959. PubMed ID: 29775124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking.
    Bharadwaj A; Ting YP
    Bioresour Technol; 2013 Feb; 130():673-80. PubMed ID: 23334026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests.
    Erust C; Akcil A; Bedelova Z; Anarbekov K; Baikonurova A; Tuncuk A
    Waste Manag; 2016 Mar; 49():455-461. PubMed ID: 26711187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of metal recovery from spent petroleum catalysts and ash.
    Akcil A; VegliĆ² F; Ferella F; Okudan MD; Tuncuk A
    Waste Manag; 2015 Nov; 45():420-33. PubMed ID: 26188611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    J Hazard Mater; 2008 Apr; 152(3):1082-91. PubMed ID: 17825485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery of nickel oxide from spent catalyst.
    Al-Mansi NM; Abdel MN
    Waste Manag; 2002; 22(1):85-90. PubMed ID: 11942708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery of H2SO4 from an acid leach solution by diffusion dialysis.
    Wei C; Li X; Deng Z; Fan G; Li M; Li C
    J Hazard Mater; 2010 Apr; 176(1-3):226-30. PubMed ID: 19945217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Treatment of spent catalyst from the nitrogenous fertilizer industry--a review of the available methods of regeneration, recovery and disposal.
    Singh B
    J Hazard Mater; 2009 Aug; 167(1-3):24-37. PubMed ID: 19286315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant.
    Li L; Ge J; Wu F; Chen R; Chen S; Wu B
    J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336.
    Reddy BR; Raju B; Lee JY; Park HK
    J Hazard Mater; 2010 Aug; 180(1-3):253-8. PubMed ID: 20435411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid leaching and recovery of valuable metals from spent Lithium Ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride.
    Nshizirungu T; Rana M; Jo YT; Park JH
    J Hazard Mater; 2020 Sep; 396():122667. PubMed ID: 32361298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery and reuse of Ni(II) from rinsewater of electroplating industries.
    Priya PG; Basha CA; Ramamurthi V; Begum SN
    J Hazard Mater; 2009 Apr; 163(2-3):899-909. PubMed ID: 18762375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale.
    Barbaroux R; Plasari E; Mercier G; Simonnot MO; Morel JL; Blais JF
    Sci Total Environ; 2012 Apr; 423():111-9. PubMed ID: 22405560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium.
    Valverde IM; Paulino JF; Afonso JC
    J Hazard Mater; 2008 Dec; 160(2-3):310-7. PubMed ID: 18400377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recycling of hazardous waste as a new resource for nickel extraction.
    Gharabaghi M; Ejtemaei M; Irannajad M; Azadmehr AR
    Environ Technol; 2012; 33(13-15):1569-76. PubMed ID: 22988617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.