These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 20018697)

  • 1. Multiscale mobility networks and the spatial spreading of infectious diseases.
    Balcan D; Colizza V; Gonçalves B; Hu H; Ramasco JJ; Vespignani A
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21484-9. PubMed ID: 20018697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of human mobility proxies for modeling epidemics.
    Tizzoni M; Bajardi P; Decuyper A; Kon Kam King G; Schneider CM; Blondel V; Smoreda Z; González MC; Colizza V
    PLoS Comput Biol; 2014 Jul; 10(7):e1003716. PubMed ID: 25010676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations.
    Colizza V; Vespignani A
    J Theor Biol; 2008 Apr; 251(3):450-67. PubMed ID: 18222487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models.
    Ajelli M; Gonçalves B; Balcan D; Colizza V; Hu H; Ramasco JJ; Merler S; Vespignani A
    BMC Infect Dis; 2010 Jun; 10():190. PubMed ID: 20587041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Scaling of Human Contacts and Epidemic Processes in Metapopulation Networks.
    Tizzoni M; Sun K; Benusiglio D; Karsai M; Perra N
    Sci Rep; 2015 Oct; 5():15111. PubMed ID: 26478209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human mobility and time spent at destination: impact on spatial epidemic spreading.
    Poletto C; Tizzoni M; Colizza V
    J Theor Biol; 2013 Dec; 338():41-58. PubMed ID: 24012488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling human mobility responses to the large-scale spreading of infectious diseases.
    Meloni S; Perra N; Arenas A; Gómez S; Moreno Y; Vespignani A
    Sci Rep; 2011; 1():62. PubMed ID: 22355581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invasion threshold in structured populations with recurrent mobility patterns.
    Balcan D; Vespignani A
    J Theor Biol; 2012 Jan; 293():87-100. PubMed ID: 22019505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale.
    Van den Broeck W; Gioannini C; Gonçalves B; Quaggiotto M; Colizza V; Vespignani A
    BMC Infect Dis; 2011 Feb; 11():37. PubMed ID: 21288355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study.
    Colizza V; Barrat A; Barthélemy M; Vespignani A
    BMC Med; 2007 Nov; 5():34. PubMed ID: 18031574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Commuter mobility and the spread of infectious diseases: application to influenza in France.
    Charaudeau S; Pakdaman K; Boëlle PY
    PLoS One; 2014; 9(1):e83002. PubMed ID: 24416152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous length of stay of hosts' movements and spatial epidemic spread.
    Poletto C; Tizzoni M; Colizza V
    Sci Rep; 2012; 2():476. PubMed ID: 22741060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The modeling of global epidemics: stochastic dynamics and predictability.
    Colizza V; Barrat A; Barthélemy M; Vespignani A
    Bull Math Biol; 2006 Nov; 68(8):1893-921. PubMed ID: 17086489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidemic Spreading in Metapopulation Networks Coupled With Awareness Propagation.
    Gao S; Dai X; Wang L; Perra N; Wang Z
    IEEE Trans Cybern; 2023 Dec; 53(12):7686-7698. PubMed ID: 36054390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the airline transportation network in the prediction and predictability of global epidemics.
    Colizza V; Barrat A; Barthélemy M; Vespignani A
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2015-20. PubMed ID: 16461461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between epidemic spread and information propagation on metapopulation networks.
    Wang B; Han Y; Tanaka G
    J Theor Biol; 2017 May; 420():18-25. PubMed ID: 28259661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human mobility patterns predict divergent epidemic dynamics among cities.
    Dalziel BD; Pourbohloul B; Ellner SP
    Proc Biol Sci; 2013 Sep; 280(1766):20130763. PubMed ID: 23864593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies.
    Krause AL; Kurowski L; Yawar K; Van Gorder RA
    J Theor Biol; 2018 Jul; 449():35-52. PubMed ID: 29673907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidemic spreading induced by diversity of agents' mobility.
    Zhou J; Chung NN; Chew LY; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026115. PubMed ID: 23005833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What's in a crowd? Analysis of face-to-face behavioral networks.
    Isella L; Stehlé J; Barrat A; Cattuto C; Pinton JF; Van den Broeck W
    J Theor Biol; 2011 Feb; 271(1):166-80. PubMed ID: 21130777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.