These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20018828)

  • 1. A contribution of area 5 of the posterior parietal cortex to the planning of visually guided locomotion: limb-specific and limb-independent effects.
    Andujar JE; Lajoie K; Drew T
    J Neurophysiol; 2010 Feb; 103(2):986-1006. PubMed ID: 20018828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory.
    Lajoie K; Andujar JE; Pearson K; Drew T
    J Neurophysiol; 2010 Apr; 103(4):2234-54. PubMed ID: 20386041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion.
    Lajoie K; Drew T
    J Neurophysiol; 2007 Mar; 97(3):2339-54. PubMed ID: 17215501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption.
    Marigold DS; Drew T
    J Neurophysiol; 2011 May; 105(5):2457-70. PubMed ID: 21411565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical mechanisms involved in visuomotor coordination during precision walking.
    Drew T; Andujar JE; Lajoie K; Yakovenko S
    Brain Res Rev; 2008 Jan; 57(1):199-211. PubMed ID: 17935789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the motor cortex in the control of visually triggered gait modifications.
    Drew T; Jiang W; Kably B; Lavoie S
    Can J Physiol Pharmacol; 1996 Apr; 74(4):426-42. PubMed ID: 8828889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discharge characteristics of neurons in the red nucleus during voluntary gait modifications: a comparison with the motor cortex.
    Lavoie S; Drew T
    J Neurophysiol; 2002 Oct; 88(4):1791-814. PubMed ID: 12364507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor cortical activity during voluntary gait modifications in the cat. II. Cells related to the hindlimbs.
    Widajewicz W; Kably B; Drew T
    J Neurophysiol; 1994 Nov; 72(5):2070-89. PubMed ID: 7884445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs.
    Drew T
    J Neurophysiol; 1993 Jul; 70(1):179-99. PubMed ID: 8360715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posterior parietal cortex estimates the relationship between object and body location during locomotion.
    Marigold DS; Drew T
    Elife; 2017 Oct; 6():. PubMed ID: 29053442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications.
    Prentice SD; Drew T
    J Neurophysiol; 2001 Feb; 85(2):679-98. PubMed ID: 11160503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion.
    Armstrong DM; Marple-Horvat DE
    Can J Physiol Pharmacol; 1996 Apr; 74(4):443-55. PubMed ID: 8828890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 6--motor planning of locomotor adaptations on the basis of vision: the role of the posterior parietal cortex.
    Marigold DS; Andujar JE; Lajoie K; Drew T
    Prog Brain Res; 2011; 188():83-100. PubMed ID: 21333804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the Entopeduncular Nucleus and the Globus Pallidus to the Control of Locomotion and Visually Guided Gait Modifications in the Cat.
    MulliƩ Y; Arto I; Yahiaoui N; Drew T
    Cereb Cortex; 2020 Jul; 30(9):5121-5146. PubMed ID: 32377665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of motor and visual information in the parietal area 5 during locomotion.
    Beloozerova IN; Sirota MG
    J Neurophysiol; 2003 Aug; 90(2):961-71. PubMed ID: 12904498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait modification during approach phase when stepping over an obstacle in rats.
    Sato Y; Aoki S; Yanagihara D
    Neurosci Res; 2012 Mar; 72(3):263-9. PubMed ID: 22178543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taking the next step: cortical contributions to the control of locomotion.
    Drew T; Marigold DS
    Curr Opin Neurobiol; 2015 Aug; 33():25-33. PubMed ID: 25643847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticoreticular pathways in the cat. II. Discharge activity of neurons in area 4 during voluntary gait modifications.
    Kably B; Drew T
    J Neurophysiol; 1998 Jul; 80(1):406-24. PubMed ID: 9658060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta).
    Courtine G; Roy RR; Raven J; Hodgson J; McKay H; Yang H; Zhong H; Tuszynski MH; Edgerton VR
    Brain; 2005 Oct; 128(Pt 10):2338-58. PubMed ID: 16049043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral areas mediating visual redirection of gaze: cooling deactivation of 15 loci in the cat.
    Lomber SG; Payne BR
    J Comp Neurol; 2004 Jun; 474(2):190-208. PubMed ID: 15164422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.