BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20019081)

  • 1. Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation.
    Oura T; Kajiwara S
    Microbiology (Reading); 2010 Apr; 156(Pt 4):1234-1243. PubMed ID: 20019081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of the sphingolipid Delta8-desaturase gene causes a delay in morphological changes in Candida albicans.
    Oura T; Kajiwara S
    Microbiology (Reading); 2008 Dec; 154(Pt 12):3795-3803. PubMed ID: 19047747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalase gene disruptant of the human pathogenic yeast Candida albicans is defective in hyphal growth, and a catalase-specific inhibitor can suppress hyphal growth of wild-type cells.
    Nakagawa Y
    Microbiol Immunol; 2008 Jan; 52(1):16-24. PubMed ID: 18352908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling.
    Ternes P; Sperling P; Albrecht S; Franke S; Cregg JM; Warnecke D; Heinz E
    J Biol Chem; 2006 Mar; 281(9):5582-92. PubMed ID: 16339149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans.
    Prasad T; Saini P; Gaur NA; Vishwakarma RA; Khan LA; Haq QM; Prasad R
    Antimicrob Agents Chemother; 2005 Aug; 49(8):3442-52. PubMed ID: 16048959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida albicans AGE3, the ortholog of the S. cerevisiae ARF-GAP-encoding gene GCS1, is required for hyphal growth and drug resistance.
    Lettner T; Zeidler U; Gimona M; Hauser M; Breitenbach M; Bito A
    PLoS One; 2010 Aug; 5(8):e11993. PubMed ID: 20700541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of the Aspergillus nidulans glucosylceramide pathway reveals that LCB Δ8-desaturation and C9-methylation are relevant to filamentous growth, lipid raft localization and Psd1 defensin activity.
    Fernandes CM; de Castro PA; Singh A; Fonseca FL; Pereira MD; Vila TV; Atella GC; Rozental S; Savoldi M; Del Poeta M; Goldman GH; Kurtenbach E
    Mol Microbiol; 2016 Nov; 102(3):488-505. PubMed ID: 27479571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subunits of the vacuolar H+-ATPase complex, Vma4 and Vma10, are essential for virulence and represent potential drug targets in Candida albicans.
    Kim SW; Park YK; Joo YJ; Chun YJ; Hwang JY; Baek JH; Kim J
    Fungal Biol; 2019 Oct; 123(10):709-722. PubMed ID: 31542189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingolipid C-9 methyltransferases are important for growth and virulence but not for sensitivity to antifungal plant defensins in Fusarium graminearum.
    Ramamoorthy V; Cahoon EB; Thokala M; Kaur J; Li J; Shah DM
    Eukaryot Cell; 2009 Feb; 8(2):217-29. PubMed ID: 19028992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans.
    Singh A; Wang H; Silva LC; Na C; Prieto M; Futerman AH; Luberto C; Del Poeta M
    Cell Microbiol; 2012 Apr; 14(4):500-16. PubMed ID: 22151739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression analysis of SIR2 and SAPs1-4 gene expression in Candida albicans treated with allicin compared to fluconazole.
    Khodavandi A; Alizadeh F; Harmal NS; Sidik SM; Othman F; Sekawi Z; Chong PP
    Trop Biomed; 2011 Dec; 28(3):589-98. PubMed ID: 22433888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans.
    Umeyama T; Kaneko A; Watanabe H; Hirai A; Uehara Y; Niimi M; Azuma M
    Infect Immun; 2006 Apr; 74(4):2373-81. PubMed ID: 16552067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Metabolic Profiling Identifies
    Garbe E; Gerwien F; Driesch D; Müller T; Böttcher B; Gräler M; Vylkova S
    mSystems; 2022 Dec; 7(6):e0053922. PubMed ID: 36264075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans?
    Wang Y
    J Microbiol; 2016 Mar; 54(3):170-7. PubMed ID: 26920877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans.
    Sorgo AG; Heilmann CJ; Dekker HL; Bekker M; Brul S; de Koster CG; de Koning LJ; Klis FM
    Eukaryot Cell; 2011 Aug; 10(8):1071-81. PubMed ID: 21622905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three prevacuolar compartment Rab GTPases impact Candida albicans hyphal growth.
    Johnston DA; Tapia AL; Eberle KE; Palmer GE
    Eukaryot Cell; 2013 Jul; 12(7):1039-50. PubMed ID: 23709183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner.
    Glory A; van Oostende CT; Geitmann A; Bachewich C
    Fungal Genet Biol; 2017 Oct; 107():51-66. PubMed ID: 28803909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Analysis of
    Min K; Biermann A; Hogan DA; Konopka JB
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30463924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ
    Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.
    Haque F; Alfatah M; Ganesan K; Bhattacharyya MS
    Sci Rep; 2016 Mar; 6():23575. PubMed ID: 27030404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.