These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Nagai H; Yuzawa H; Yura T Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10515-9. PubMed ID: 1961716 [TBL] [Abstract][Full Text] [Related]
23. Activity of Rhodobacter sphaeroides RpoHII, a second member of the heat shock sigma factor family. Green HA; Donohue TJ J Bacteriol; 2006 Aug; 188(16):5712-21. PubMed ID: 16885439 [TBL] [Abstract][Full Text] [Related]
24. Evidence that GroEL, not sigma 32, is involved in transcriptional regulation of the Vibrio fischeri luminescence genes in Escherichia coli. Dolan KM; Greenberg EP J Bacteriol; 1992 Aug; 174(15):5132-5. PubMed ID: 1352769 [TBL] [Abstract][Full Text] [Related]
25. Role of Escherichia coli heat shock proteins DnaK and HtpG (C62.5) in response to nutritional deprivation. Spence J; Cegielska A; Georgopoulos C J Bacteriol; 1990 Dec; 172(12):7157-66. PubMed ID: 2254278 [TBL] [Abstract][Full Text] [Related]
26. A mutation in dnaK causes stabilization of the heat shock sigma factor σ32, accumulation of heat shock proteins and increase in toluene-resistance in Pseudomonas putida. Kobayashi Y; Ohtsu I; Fujimura M; Fukumori F Environ Microbiol; 2011 Aug; 13(8):2007-17. PubMed ID: 20880327 [TBL] [Abstract][Full Text] [Related]
27. Isolation and characterization of the Xanthomonas campestris rpoH gene coding for a 32-kDa heat shock sigma factor. Huang LH; Tseng YH; Yang MT Biochem Biophys Res Commun; 1998 Mar; 244(3):854-60. PubMed ID: 9535756 [TBL] [Abstract][Full Text] [Related]
28. Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli. Muffler A; Barth M; Marschall C; Hengge-Aronis R J Bacteriol; 1997 Jan; 179(2):445-52. PubMed ID: 8990297 [TBL] [Abstract][Full Text] [Related]
29. Induction by psychotropic drugs and local anesthetics of DnaK and GroEL proteins in Escherichia coli. Tanji K; Mizushima T; Natori S; Sekimizu K Biochim Biophys Acta; 1992 Jan; 1129(2):172-6. PubMed ID: 1346093 [TBL] [Abstract][Full Text] [Related]
30. [Genetic regulation of the heat-shock response in Escherichia coli]. Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571 [TBL] [Abstract][Full Text] [Related]
31. How a mutation in the gene encoding sigma 70 suppresses the defective heat shock response caused by a mutation in the gene encoding sigma 32. Zhou YN; Gross CA J Bacteriol; 1992 Nov; 174(22):7128-37. PubMed ID: 1385385 [TBL] [Abstract][Full Text] [Related]
32. Regulation of the heat shock response in E coli: involvement of positive and negative cis-acting elements in translation control of sigma 32 synthesis. Nagai H; Yuzawa H; Yura T Biochimie; 1991 Dec; 73(12):1473-9. PubMed ID: 1725259 [TBL] [Abstract][Full Text] [Related]
33. Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Kusukawa N; Yura T Genes Dev; 1988 Jul; 2(7):874-82. PubMed ID: 2905317 [TBL] [Abstract][Full Text] [Related]
34. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nakahigashi K; Yanagi H; Yura T Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460 [TBL] [Abstract][Full Text] [Related]
35. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Liberek K; Georgopoulos C Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11019-23. PubMed ID: 8248205 [TBL] [Abstract][Full Text] [Related]
36. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Lange R; Hengge-Aronis R Mol Microbiol; 1991 Jan; 5(1):49-59. PubMed ID: 1849609 [TBL] [Abstract][Full Text] [Related]
37. An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease. Bertani D; Oppenheim AB; Narberhaus F FEBS Lett; 2001 Mar; 493(1):17-20. PubMed ID: 11277997 [TBL] [Abstract][Full Text] [Related]
38. A mutation that enhances synthesis of sigma 32 and suppresses temperature-sensitive growth of the rpoH15 mutant of Escherichia coli. Yano R; Nagai H; Shiba K; Yura T J Bacteriol; 1990 Apr; 172(4):2124-30. PubMed ID: 2138605 [TBL] [Abstract][Full Text] [Related]
39. Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Morita MT; Tanaka Y; Kodama TS; Kyogoku Y; Yanagi H; Yura T Genes Dev; 1999 Mar; 13(6):655-65. PubMed ID: 10090722 [TBL] [Abstract][Full Text] [Related]
40. Co-expression of a heat shock transcription factor to improve conformational quality of recombinant protein in Escherichia coli. Hsu SY; Lin YS; Li SJ; Lee WC J Biosci Bioeng; 2014 Sep; 118(3):242-8. PubMed ID: 24656305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]