These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 20020110)
1. Raman spectroscopic analysis of minerals and organic molecules of relevance to astrobiology. Alajtal AI; Edwards HGM; Scowen IJ Anal Bioanal Chem; 2010 May; 397(1):215-221. PubMed ID: 20020110 [TBL] [Abstract][Full Text] [Related]
2. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype. Edwards HG; Hutchinson I; Ingley R Anal Bioanal Chem; 2012 Oct; 404(6-7):1723-31. PubMed ID: 22865011 [TBL] [Abstract][Full Text] [Related]
3. Raman spectroscopy of the Dukhan sabkha: identification of geological and biogeological molecules in an extreme environment. Edwards HG; Sadooni F; Vítek P; Jehlicka J Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1922):3099-107. PubMed ID: 20529947 [TBL] [Abstract][Full Text] [Related]
4. Raman spectroscopic identification of usnic acid in hydrothermal minerals as a potential Martian analogue. Osterrothová K; Jehlicka J Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):576-80. PubMed ID: 18980859 [TBL] [Abstract][Full Text] [Related]
6. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Edwards HG; Hutchinson IB; Ingley R; Parnell J; Vítek P; Jehlička J Astrobiology; 2013 Jun; 13(6):543-9. PubMed ID: 23758166 [TBL] [Abstract][Full Text] [Related]
7. Raman Spectroscopic Techniques for Planetary Exploration: Detecting Microorganisms through Minerals. Verkaaik MF; Hooijschuur JH; Davies GR; Ariese F Astrobiology; 2015 Aug; 15(8):697-707. PubMed ID: 26186197 [TBL] [Abstract][Full Text] [Related]
8. Question 2: Raman spectroscopic approach to analytical astrobiology: the detection of key biomolecular markers in the search for life. Edwards HG Orig Life Evol Biosph; 2007 Oct; 37(4-5):335-9. PubMed ID: 17592755 [TBL] [Abstract][Full Text] [Related]
9. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry. Malherbe C; Hutchinson IB; Ingley R; Boom A; Carr AS; Edwards H; Vertruyen B; Gilbert B; Eppe G Astrobiology; 2017 Nov; 17(11):1123-1137. PubMed ID: 29039682 [TBL] [Abstract][Full Text] [Related]
10. The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Edwards HG; Vandenabeele P; Jorge-Villar SE; Carter EA; Perez FR; Hargreaves MD Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1133-7. PubMed ID: 17600759 [TBL] [Abstract][Full Text] [Related]
11. Life in the sabkha: Raman spectroscopy of halotrophic extremophiles of relevance to planetary exploration. Edwards HG; Mohsin MA; Sadooni FN; Nik Hassan NF; Munshi T Anal Bioanal Chem; 2006 May; 385(1):46-56. PubMed ID: 16607492 [TBL] [Abstract][Full Text] [Related]
12. Quantitative analysis of binary and ternary organo-mineral solid dispersions by Raman spectroscopy for robotic planetary exploration missions on Mars. Demaret L; Hutchinson IB; Eppe G; Malherbe C Analyst; 2021 Nov; 146(23):7306-7319. PubMed ID: 34755725 [TBL] [Abstract][Full Text] [Related]
13. Raman spectroscopic identification of phthalic and mellitic acids in mineral matrices. Osterrothová K; Jehlička J Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1092-8. PubMed ID: 20870453 [TBL] [Abstract][Full Text] [Related]
14. ExoMars Raman Laser Spectrometer: A Tool for the Potential Recognition of Wet-Target Craters on Mars. Veneranda M; Lopez-Reyes G; Manrique JA; Medina J; Ruiz-Galende P; Torre-Fdez I; Castro K; Lantz C; Poulet F; Dypvik H; Werner SC; Rull F Astrobiology; 2020 Mar; 20(3):349-363. PubMed ID: 31985268 [TBL] [Abstract][Full Text] [Related]
15. Detection of Potential Lipid Biomarkers in Oxidative Environments by Raman Spectroscopy and Implications for the ExoMars 2020-Raman Laser Spectrometer Instrument Performance. Carrizo D; Muñoz-Iglesias V; Fernández-Sampedro MT; Gil-Lozano C; Sánchez-García L; Prieto-Ballesteros O; Medina J; Rull F Astrobiology; 2020 Mar; 20(3):405-414. PubMed ID: 31985262 [TBL] [Abstract][Full Text] [Related]
16. Identification of morphological biosignatures in Martian analogue field specimens using in situ planetary instrumentation. Pullan D; Westall F; Hofmann BA; Parnell J; Cockell CS; Edwards HG; Villar SE; Schröder C; Cressey G; Marinangeli L; Richter L; Klingelhöfer G Astrobiology; 2008 Feb; 8(1):119-56. PubMed ID: 18211229 [TBL] [Abstract][Full Text] [Related]
17. Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Edwards HG; Villar SE; Parnell J; Cockell CS; Lee P Analyst; 2005 Jun; 130(6):917-23. PubMed ID: 15912241 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic study of terrestrial analogues to support rover missions to Mars - A Raman-centred review. Rull F; Veneranda M; Manrique-Martinez JA; Sanz-Arranz A; Saiz J; Medina J; Moral A; Perez C; Seoane L; Lalla E; Charro E; Lopez JM; Nieto LM; Lopez-Reyes G Anal Chim Acta; 2022 May; 1209():339003. PubMed ID: 35569840 [TBL] [Abstract][Full Text] [Related]
19. Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers. Malherbe C; Hutchinson IB; McHugh M; Ingley R; Jehlička J; Edwards HGM Astrobiology; 2017 Apr; 17(4):351-362. PubMed ID: 28418705 [TBL] [Abstract][Full Text] [Related]
20. Challenges Analyzing Gypsum on Mars by Raman Spectroscopy. Marshall CP; Olcott Marshall A Astrobiology; 2015 Sep; 15(9):761-9. PubMed ID: 26317670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]