These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20020193)

  • 1. Uncovering gamma in visual tasks.
    Nottage JF
    Brain Topogr; 2010 Mar; 23(1):58-71. PubMed ID: 20020193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccade related gamma-band activity in intracerebral EEG: dissociating neural from ocular muscle activity.
    Jerbi K; Freyermuth S; Dalal S; Kahane P; Bertrand O; Berthoz A; Lachaux JP
    Brain Topogr; 2009 Jun; 22(1):18-23. PubMed ID: 19234780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The broadband-transient induced gamma-band response in scalp EEG reflects the execution of saccades.
    Yuval-Greenberg S; Deouell LY
    Brain Topogr; 2009 Jun; 22(1):3-6. PubMed ID: 19234781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic removal of high-amplitude artefacts from single-channel electroencephalograms.
    Teixeira AR; Tomé AM; Lang EW; Gruber P; Martins da Silva A
    Comput Methods Programs Biomed; 2006 Aug; 83(2):125-38. PubMed ID: 16876903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.
    Keren AS; Yuval-Greenberg S; Deouell LY
    Neuroimage; 2010 Feb; 49(3):2248-63. PubMed ID: 19874901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction.
    Freyer F; Becker R; Anami K; Curio G; Villringer A; Ritter P
    Neuroimage; 2009 Oct; 48(1):94-108. PubMed ID: 19539035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced gamma band responses in human EEG after the control of miniature saccadic artifacts.
    Hassler U; Barreto NT; Gruber T
    Neuroimage; 2011 Aug; 57(4):1411-21. PubMed ID: 21645624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of different artefact removal algorithms for EEG signals acquired during functional MRI.
    Grouiller F; Vercueil L; Krainik A; Segebarth C; Kahane P; David O
    Neuroimage; 2007 Oct; 38(1):124-37. PubMed ID: 17766149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding gamma.
    Fries P; Scheeringa R; Oostenveld R
    Neuron; 2008 May; 58(3):303-5. PubMed ID: 18466741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Constrained ICA and its application to removing artifacts in EEG].
    Gao A; Luo Y; Chen K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):497-501. PubMed ID: 18693418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of signal artefacts on electroencephalography spectral power during sleep: quantifying the effectiveness of automated artefact-rejection algorithms.
    Liu J; Ramakrishnan S; Laxminarayan S; Neal M; Cashmere DJ; Germain A; Reifman J
    J Sleep Res; 2018 Feb; 27(1):98-102. PubMed ID: 28656650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realignment parameter-informed artefact correction for simultaneous EEG-fMRI recordings.
    Moosmann M; Schönfelder VH; Specht K; Scheeringa R; Nordby H; Hugdahl K
    Neuroimage; 2009 May; 45(4):1144-50. PubMed ID: 19349230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings.
    Masterton RA; Abbott DF; Fleming SW; Jackson GD
    Neuroimage; 2007 Aug; 37(1):202-11. PubMed ID: 17582785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic removal of eye-movement and blink artifacts from EEG signals.
    Gao JF; Yang Y; Lin P; Wang P; Zheng CX
    Brain Topogr; 2010 Mar; 23(1):105-14. PubMed ID: 20039116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fast positive cortical potentials of the human cerebral hemispheres to visual stimuli evoking saccades].
    Shul'govskiĭ VV; Slavutskaia MV; Moiseeva VV; Gal'perina EI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1997; 47(3):469-79. PubMed ID: 9273786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case.
    Romero S; Mañanas MA; Barbanoj MJ
    Comput Biol Med; 2008 Mar; 38(3):348-60. PubMed ID: 18222418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilizing gamma band to improve mental task based brain-computer interface design.
    Palaniappan R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):299-303. PubMed ID: 17009489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient reduction of stimulus artefact in TMS-EEG by epithelial short-circuiting by mini-punctures.
    Julkunen P; Pääkkönen A; Hukkanen T; Könönen M; Tiihonen P; Vanhatalo S; Karhu J
    Clin Neurophysiol; 2008 Feb; 119(2):475-81. PubMed ID: 18063410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Good practices in EEG-MRI: the utility of retrospective synchronization and PCA for the removal of MRI gradient artefacts.
    Mandelkow H; Brandeis D; Boesiger P
    Neuroimage; 2010 Feb; 49(3):2287-303. PubMed ID: 19892021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of EEG noise and artifact using blind source separation.
    Fitzgibbon SP; Powers DM; Pope KJ; Clark CR
    J Clin Neurophysiol; 2007 Jun; 24(3):232-43. PubMed ID: 17545826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.