BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20020317)

  • 1. Novel metabolic pathway for salicylate biodegradation via phenol in yeast Trichosporon moniliiforme.
    Iwasaki Y; Gunji H; Kino K; Hattori T; Ishii Y; Kirimura K
    Biodegradation; 2010 Jul; 21(4):557-64. PubMed ID: 20020317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic Kolbe-Schmitt reaction to form salicylic acid from phenol: enzymatic characterization and gene identification of a novel enzyme, Trichosporon moniliiforme salicylic acid decarboxylase.
    Kirimura K; Gunji H; Wakayama R; Hattori T; Ishii Y
    Biochem Biophys Res Commun; 2010 Apr; 394(2):279-84. PubMed ID: 20188702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts.
    Margesin R; Fonteyne PA; Redl B
    Res Microbiol; 2005; 156(1):68-75. PubMed ID: 15636749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology.
    Kaszycki P; Czechowska K; Petryszak P; Miedzobrodzki J; Pawlik B; Kołoczek H
    Acta Biochim Pol; 2006; 53(3):463-73. PubMed ID: 17019438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of coumarines during the degradation of alkyl substituted aromatic oil components by the yeast Trichosporon asahii.
    Awe S; Mikolasch A; Schauer F
    Appl Microbiol Biotechnol; 2009 Oct; 84(5):965-76. PubMed ID: 19536538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable isotope probing reveals Trichosporon yeast to be active in situ in soil phenol metabolism.
    DeRito CM; Madsen EL
    ISME J; 2009 Apr; 3(4):477-85. PubMed ID: 19092862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism.
    Oie CS; Albaugh CE; Peyton BM
    Water Res; 2007 Mar; 41(6):1235-42. PubMed ID: 17292440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of aromatic compounds by Trichosporon sp.
    Caselli L; Hanau S
    Boll Soc Ital Biol Sper; 1994 Apr; 70(4):83-8. PubMed ID: 7916195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of carbaryl by a Micrococcus species.
    Doddamani HP; Ninnekar HZ
    Curr Microbiol; 2001 Jul; 43(1):69-73. PubMed ID: 11375667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
    Tam le T; Eymann C; Albrecht D; Sietmann R; Schauer F; Hecker M; Antelmann H
    Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel insights into the fungal oxidation of monoaromatic and biarylic environmental pollutants by characterization of two new ring cleavage enzymes.
    Schlüter R; Lippmann R; Hammer E; Gesell Salazar M; Schauer F
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):5043-53. PubMed ID: 23400446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenol degradation by immobilized cells of Arthrobacter citreus.
    Karigar C; Mahesh A; Nagenahalli M; Yun DJ
    Biodegradation; 2006 Feb; 17(1):47-55. PubMed ID: 16453171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Oxidation characteristics of the aromatic acids formed in DDT breakdown by a Pseudomonas aeruginosa culture].
    Pertsova RN; Baskunov BP; Golovleva LA
    Mikrobiologiia; 1982; 51(2):275-80. PubMed ID: 6806578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenol degradation by a Graphium sp. FIB4 isolated from industrial effluents.
    Santos VL; Heilbuth NM; Braga DT; Monteiro AS; Linardi VR
    J Basic Microbiol; 2003; 43(3):238-48. PubMed ID: 12761775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of phenol by Trichosporon sp. LE3 cells immobilized in alginate.
    Santos VL; Heilbuth NM; Linardi VR
    J Basic Microbiol; 2001; 41(3-4):171-8. PubMed ID: 11512449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Phenol degradation by Rhodococcus opacus strain 1G].
    Shumkova ES; Solianikova IP; Plotnikova EG; Golovleva LA
    Prikl Biokhim Mikrobiol; 2009; 45(1):51-7. PubMed ID: 19235509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenol and cresol mixture degradation by the yeast Trichosporon cutaneum.
    Alexieva Z; Gerginova M; Manasiev J; Zlateva P; Shivarova N; Krastanov A
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1297-301. PubMed ID: 18712562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains.
    Mrozik A; Labuzek S
    Acta Microbiol Pol; 2002; 51(4):367-78. PubMed ID: 12708825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of aromatic compounds by Acinetobacter radioresistens S13: growth characteristics on single substrates and mixtures.
    Mazzoli R; Pessione E; Giuffrida MG; Fattori P; Barello C; Giunta C; Lindley ND
    Arch Microbiol; 2007 Jul; 188(1):55-68. PubMed ID: 17483933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.