BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20020317)

  • 21. Identification of a meta-cleavage pathway for metabolism of phenoxyacetic acid and phenol in Pseudomonas cepacia AC1100.
    Ghadi SC; Sangodkar UM
    Biochem Biophys Res Commun; 1994 Oct; 204(2):983-93. PubMed ID: 7526858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydroxylation of phenol to catechol by Candida tropicalis: involvement of cytochrome P450.
    Stiborová M; Suchá V; Miksanová M; Páca J; Páca J
    Gen Physiol Biophys; 2003 Jun; 22(2):167-79. PubMed ID: 14661729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenol degradation by Fusarium oxysporum GJ4 is affected by toxic catalytic polymerization mediated by copper oxide.
    Park JY; Hong JW; Gadd GM
    Chemosphere; 2009 May; 75(6):765-71. PubMed ID: 19211129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenol degradation by an enterobacterium: a Klebsiella strain carries a TOL-like plasmid and a gene encoding a novel phenol hydroxylase.
    Heesche-Wagner K; Schwarz T; Kaufmann M
    Can J Microbiol; 1999 Feb; 45(2):162-71. PubMed ID: 10380649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complete degradation of butyl benzyl phthalate by a defined bacterial consortium: role of individual isolates in the assimilation pathway.
    Chatterjee S; Dutta TK
    Chemosphere; 2008 Jan; 70(5):933-41. PubMed ID: 17669462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal biostimulation strategy for phenol degradation with indigenous rhizobium Ralstonia taiwanensis.
    Chen BY; Chen WM; Chang JS
    J Hazard Mater; 2007 Jan; 139(2):232-7. PubMed ID: 16844294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity.
    Alva VA; Peyton BM
    Environ Sci Technol; 2003 Oct; 37(19):4397-402. PubMed ID: 14572091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts.
    Bergauer P; Fonteyne PA; Nolard N; Schinner F; Margesin R
    Chemosphere; 2005 May; 59(7):909-18. PubMed ID: 15823324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of the biodegradation of phenol in wastewaters from the chemical industry by covalently immobilized Trichosporon cutaneum cells.
    Yotova L; Tzibranska I; Tileva F; Markx GH; Georgieva N
    J Ind Microbiol Biotechnol; 2009 Mar; 36(3):367-72. PubMed ID: 19052785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradation of phenol in static cultures by Penicillium chrysogenum ERK1: catalytic abilities and residual phytotoxicity.
    Wolski EA; Barrera V; Castellari C; González JF
    Rev Argent Microbiol; 2012; 44(2):113-21. PubMed ID: 22997771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of inducible protein complexes in the phenol degrader Pseudomonas sp. strain phDV1 by blue native gel electrophoresis and mass spectrometry.
    Tsirogianni E; Aivaliotis M; Papasotiriou DG; Karas M; Tsiotis G
    Amino Acids; 2006 Feb; 30(1):63-72. PubMed ID: 16003498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1.
    Tallur PN; Megadi VB; Ninnekar HZ
    Biodegradation; 2008 Feb; 19(1):77-82. PubMed ID: 17431802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A catabolic pathway for the degradation of chrysene by Pseudoxanthomonas sp. PNK-04.
    Nayak AS; Sanjeev Kumar S; Santosh Kumar M; Anjaneya O; Karegoudar TB
    FEMS Microbiol Lett; 2011 Jul; 320(2):128-34. PubMed ID: 21545490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Mutants of the plasmid for biodegradation of naphthalene, determining catechol oxidation via the meta-pathway].
    Kulakova AN; Boronin AM
    Mikrobiologiia; 1989; 58(2):298-304. PubMed ID: 2811710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of pyrene by an enteric bacterium, Leclercia adecarboxylata PS4040.
    Sarma PM; Duraja P; Deshpande S; Lal B
    Biodegradation; 2010 Feb; 21(1):59-69. PubMed ID: 19590967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides.
    Sietmann R; Hammer E; Specht M; Cerniglia CE; Schauer F
    Appl Environ Microbiol; 2001 Sep; 67(9):4158-65. PubMed ID: 11526019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of initial sulfide concentration on sulfide and phenol oxidation under denitrifying conditions.
    Beristain-Cardoso R; Texier AC; Sierra-Alvarez R; Razo-Flores E; Field JA; Gómez J
    Chemosphere; 2009 Jan; 74(2):200-5. PubMed ID: 18990426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading.
    Jiang HL; Tay JH; Tay ST
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):602-8. PubMed ID: 12802532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategy of Pseudomonas pseudoalcaligenes C70 for effective degradation of phenol and salicylate.
    Jõesaar M; Viggor S; Heinaru E; Naanuri E; Mehike M; Leito I; Heinaru A
    PLoS One; 2017; 12(3):e0173180. PubMed ID: 28257519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of phenol biodegradation pathways in three psychrotolerant yeasts, Candida subhashii A01
    Filipowicz N; Momotko M; Boczkaj G; Cieśliński H
    Enzyme Microb Technol; 2020 Nov; 141():109663. PubMed ID: 33051016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.