These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20020317)

  • 41. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis.
    Jiang Y; Wen J; Bai J; Jia X; Hu Z
    J Hazard Mater; 2007 Aug; 147(1-2):672-6. PubMed ID: 17597295
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monitoring behaviour of catabolic genes and change of microbial community structures in seawater microcosms during aromatic compound degradation.
    Sei K; Inoue D; Wada K; Mori K; Ike M; Kohno T; Fujita M
    Water Res; 2004 Dec; 38(20):4405-14. PubMed ID: 15556215
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Acinetobacter radioresistens metabolizing aromatic compounds. 2. Biochemical and microbiological characterization of the strain.
    Pessione E; Giunta C
    Microbios; 1997; 89(359):105-17. PubMed ID: 9237384
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095.
    Song H; Liu Y; Xu W; Zeng G; Aibibu N; Xu L; Chen B
    Bioresour Technol; 2009 Nov; 100(21):5079-84. PubMed ID: 19541478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis.
    Jiang Y; Wen J; Lan L; Hu Z
    Biodegradation; 2007 Dec; 18(6):719-29. PubMed ID: 17245562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasmid-mediated degradation of o-phthalate and salicylate by a Moraxella sp.
    Rani M; Prakash D; Sobti RC; Jain RK
    Biochem Biophys Res Commun; 1996 Mar; 220(2):377-81. PubMed ID: 8645313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Degradation pathways of cyclic alkanes in Rhodococcus sp. NDKK48.
    Koma D; Sakashita Y; Kubota K; Fujii Y; Hasumi F; Chung SY; Kubo M
    Appl Microbiol Biotechnol; 2004 Nov; 66(1):92-9. PubMed ID: 15118847
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast.
    Patel A; Sartaj K; Arora N; Pruthi V; Pruthi PA
    J Hazard Mater; 2017 Oct; 340():47-56. PubMed ID: 28711832
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth of Trametes versicolor on phenol.
    Yemendzhiev H; Gerginova M; Krastanov A; Stoilova I; Alexieva Z
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1309-12. PubMed ID: 18712560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.
    Hack N; Reinwand C; Abbt-Braun G; Horn H; Frimmel FH
    J Contam Hydrol; 2015 Dec; 183():40-54. PubMed ID: 26529301
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolism of acenaphthylene via 1,2-dihydroxynaphthalene and catechol by Stenotrophomonas sp. RMSK.
    Nayak AS; Veeranagouda Y; Lee K; Karegoudar TB
    Biodegradation; 2009 Nov; 20(6):837-43. PubMed ID: 19543983
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phenol degradation by yeasts isolated from industrial effluents.
    Santos VL; Linardi VR
    J Gen Appl Microbiol; 2001 Aug; 47(4):213-221. PubMed ID: 12483621
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation and characterization of a dibenzofuran-degrading yeast: identification of oxidation and ring cleavage products.
    Hammer E; Krowas D; Schäfer A; Specht M; Francke W; Schauer F
    Appl Environ Microbiol; 1998 Jun; 64(6):2215-9. PubMed ID: 9603837
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Growth and enzyme synthesis during continuous culture of Trichosporon cutaneum on phenol.
    Spånning A; Neujahr HY
    Biotechnol Bioeng; 1987 Mar; 29(4):464-8. PubMed ID: 18576473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Whole-genome sequencing of an acidophilic Rhodotorula sp. ZM1 and its phenol-degrading capability under acidic conditions.
    Su X; Zhou M; Hu P; Xiao Y; Wang Z; Mei R; Hashmi MZ; Lin H; Chen J; Sun F
    Chemosphere; 2019 Oct; 232():76-86. PubMed ID: 31152906
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biodegradation of phenol by Chlamydomonas reinhardtii.
    Nazos TT; Mavroudakis L; Pergantis SA; Ghanotakis DF
    Photosynth Res; 2020 Jun; 144(3):383-395. PubMed ID: 32358649
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous.
    Yaguchi A; Robinson A; Mihealsick E; Blenner M
    Microb Cell Fact; 2017 Nov; 16(1):206. PubMed ID: 29149902
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of a novel cometabolic degradation carbazole pathway by a phenol-cultivated Arthrobacter sp. W1.
    Shi S; Qu Y; Zhou H; Ma Q; Ma F
    Bioresour Technol; 2015 Oct; 193():281-7. PubMed ID: 26142994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Degradation of sec-hexylbenzene and its metabolites by a biofilm-forming yeast Trichosporon asahii B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam.
    Nhi-Cong le T; Mai CT; Minh NN; Ha HP; Lien do T; Tuan do V; Quyen DV; Ike M; Uyen do TT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(3):267-75. PubMed ID: 26654204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans.
    Huang C; Wu H; Smith TJ; Liu ZJ; Lou WY; Zong MH
    Biotechnol Lett; 2012 Sep; 34(9):1637-42. PubMed ID: 22648683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.