These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20020746)

  • 21. Local regional stimulation of single isolated ventricular myocytes using microfluidics.
    Klauke N; Smith G; Cooper JM
    Anal Chem; 2009 Aug; 81(15):6390-8. PubMed ID: 19572561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrotransfection of mammalian cells using microchannel-type electroporation chip.
    Shin YS; Cho K; Kim JK; Lim SH; Park CH; Lee KB; Park Y; Chung C; Han DC; Chang JK
    Anal Chem; 2004 Dec; 76(23):7045-52. PubMed ID: 15571358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic electroporation for selective release of intracellular molecules at the single-cell level.
    Bao N; Wang J; Lu C
    Electrophoresis; 2008 Jul; 29(14):2939-44. PubMed ID: 18551712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Techniques of signal generation required for electropermeabilization. Survey of electropermeabilization devices.
    Puc M; Corović S; Flisar K; Petkovsek M; Nastran J; Miklavcic D
    Bioelectrochemistry; 2004 Sep; 64(2):113-24. PubMed ID: 15296784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-cell electroporation arrays with real-time monitoring and feedback control.
    Khine M; Ionescu-Zanetti C; Blatz A; Wang LP; Lee LP
    Lab Chip; 2007 Apr; 7(4):457-62. PubMed ID: 17389961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel electroporation method using a capillary and wire-type electrode.
    Kim JA; Cho K; Shin MS; Lee WG; Jung N; Chung C; Chang JK
    Biosens Bioelectron; 2008 Apr; 23(9):1353-60. PubMed ID: 18242073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Delivery of molecules into cells using localized single cell electroporation on ITO micro-electrode based transparent chip.
    Chen SC; Santra TS; Chang CJ; Chen TJ; Wang PC; Tseng FG
    Biomed Microdevices; 2012 Oct; 14(5):811-7. PubMed ID: 22674171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity.
    Wang HY; Lu C
    Biotechnol Bioeng; 2006 Dec; 95(6):1116-25. PubMed ID: 16817188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the electroporation in the field calculation in biological tissues.
    Ramos A
    Artif Organs; 2005 Jun; 29(6):510-3. PubMed ID: 15926990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply.
    Wang HY; Lu C
    Biotechnol Bioeng; 2008 Jun; 100(3):579-86. PubMed ID: 18183631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increase of the roughness of the stainless-steel anode surface due to the exposure to high-voltage electric pulses as revealed by atomic force microscopy.
    Saulis G; Rodaite-Riseviciene R; Snitka V
    Bioelectrochemistry; 2007 May; 70(2):519-23. PubMed ID: 17289442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic selection and retention of a single cardiac myocyte, on-chip dye loading, cell contraction by chemical stimulation, and quantitative fluorescent analysis of intracellular calcium.
    Li X; Li PC
    Anal Chem; 2005 Jul; 77(14):4315-22. PubMed ID: 16013841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microsystem for transfection of exogenous molecules with spatio-temporal control into adherent cells.
    Jain T; Muthuswamy J
    Biosens Bioelectron; 2007 Jan; 22(6):863-70. PubMed ID: 16635569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell electroporation by CNT-featured microfluidic chip.
    Shahini M; Yeow JT
    Lab Chip; 2013 Jul; 13(13):2585-90. PubMed ID: 23511307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel electroporation device for gene delivery in large animals and humans.
    Tjelle TE; Salte R; Mathiesen I; Kjeken R
    Vaccine; 2006 May; 24(21):4667-70. PubMed ID: 16162367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microfluidic electroporation device for cell lysis.
    Lu H; Schmidt MA; Jensen KF
    Lab Chip; 2005 Jan; 5(1):23-9. PubMed ID: 15616736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility study for cell electroporation detection and separation by means of dielectrophoresis.
    Oblak J; Krizaj D; Amon S; Macek-Lebar A; Miklavcic D
    Bioelectrochemistry; 2007 Nov; 71(2):164-71. PubMed ID: 17509948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes.
    Lee ES; Robinson D; Rognlien JL; Harnett CK; Simmons BA; Bowe Ellis CR; Davalos RV
    Bioelectrochemistry; 2006 Sep; 69(1):117-25. PubMed ID: 16483852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical modeling of the influence of medium conductivity on electroporation.
    Ivorra A; Villemejane J; Mir LM
    Phys Chem Chem Phys; 2010 Sep; 12(34):10055-64. PubMed ID: 20585676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization.
    Sel D; Lebar AM; Miklavcic D
    IEEE Trans Biomed Eng; 2007 May; 54(5):773-81. PubMed ID: 17518273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.