These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 20020756)

  • 1. RNA-poly(o-methoxyaniline) hybrid templated growth of silver nanoparticles and nanojacketing: physical and electronic properties.
    Routh P; Mukherjee P; Nandi AK
    Langmuir; 2010 Apr; 26(7):5093-100. PubMed ID: 20020756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: a novel nano-biocomposite.
    Dawn A; Nandi AK
    J Phys Chem B; 2006 Sep; 110(37):18291-8. PubMed ID: 16970449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self assembly of poly(o-methoxy aniline) with RNA and RNA/DNA hybrids: physical properties and conformational change of poly(o-methoxy aniline).
    Routh P; Mukherjee P; Dawn A; Nandi AK
    Biophys Chem; 2009 Aug; 143(3):145-53. PubMed ID: 19482408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple method for the preparation of DNA-poly(o-methoxyaniline) hybrid: structure, morphology, and uncoiling of poly(o-methoxyaniline) on the DNA surface.
    Dawn A; Nandi AK
    Langmuir; 2006 Mar; 22(7):3273-9. PubMed ID: 16548588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical and electronic properties of polyaniline sulfonic acid-ribonucleic acid-gold nanobiocomposites.
    Routh P; Garai A; Nandi AK
    Phys Chem Chem Phys; 2011 Aug; 13(30):13670-82. PubMed ID: 21698302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecular hybrid of a conducting polymer with DNA: morphology, structure, and doping behavior.
    Dawn A; Nandi AK
    Macromol Biosci; 2005 May; 5(5):441-50. PubMed ID: 15889390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer.
    Dawn A; Mukherjee P; Nandi AK
    Langmuir; 2007 May; 23(10):5231-7. PubMed ID: 17417885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetallic Au(core)-Ag(shell) nanoparticles from interfacial redox process using poly(o-methoxyaniline).
    Mukherjee P; Nandi AK
    J Colloid Interface Sci; 2010 Apr; 344(1):30-6. PubMed ID: 20067848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials.
    Sedenková I; Trchová M; Stejskal J; Prokes J
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1906-12. PubMed ID: 20355813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ synthesis of Ag nanoparticles in aminocalix[4]arene multilayers.
    Gao S; Yuan D; Lü J; Cao R
    J Colloid Interface Sci; 2010 Jan; 341(2):320-5. PubMed ID: 19854446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of silver nanoparticles by chemical reduction method.
    Khan Z; Al-Thabaiti SA; Obaid AY; Al-Youbi AO
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):513-7. PubMed ID: 21050730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid biological synthesis of silver nanoparticles using plant leaf extracts.
    Song JY; Kim BS
    Bioprocess Biosyst Eng; 2009 Jan; 32(1):79-84. PubMed ID: 18438688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopy property of Ag nanoparticles.
    Zhao Y; Jiang Y; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Dec; 65(5):1003-6. PubMed ID: 16716648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective.
    Jain N; Bhargava A; Majumdar S; Tarafdar JC; Panwar J
    Nanoscale; 2011 Feb; 3(2):635-41. PubMed ID: 21088776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of different shape Au nanoparticles through an interfacial redox process using a conducting polymer.
    Mukherjee P; Nandi AK
    Langmuir; 2010 Feb; 26(4):2785-90. PubMed ID: 19891467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium.
    Vigneshwaran N; Kathe AA; Varadarajan PV; Nachane RP; Balasubramanya RH
    Colloids Surf B Biointerfaces; 2006 Nov; 53(1):55-9. PubMed ID: 16962745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique.
    Barakat NA; Woo KD; Kanjwal MA; Choi KE; Khil MS; Kim HY
    Langmuir; 2008 Oct; 24(20):11982-7. PubMed ID: 18811221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity.
    Sun L; Li J; Wang C; Li S; Lai Y; Chen H; Lin C
    J Hazard Mater; 2009 Nov; 171(1-3):1045-50. PubMed ID: 19632043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.
    Guidelli EJ; Ramos AP; Zaniquelli ME; Baffa O
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):140-5. PubMed ID: 21803643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wool keratin-stabilized silver nanoparticles.
    Lü X; Cui S
    Bioresour Technol; 2010 Jun; 101(12):4703-7. PubMed ID: 20163959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.