These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20020758)

  • 1. Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation.
    Pastore M; Angelis FD
    ACS Nano; 2010 Jan; 4(1):556-62. PubMed ID: 20020758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells.
    Le Bahers T; Pauporté T; Scalmani G; Adamo C; Ciofini I
    Phys Chem Chem Phys; 2009 Dec; 11(47):11276-84. PubMed ID: 20024396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes.
    Howie WH; Claeyssens F; Miura H; Peter LM
    J Am Chem Soc; 2008 Jan; 130(4):1367-75. PubMed ID: 18177043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A density functional theory and time-dependent density functional theory investigation on the anchor comparison of triarylamine-based dyes.
    Peng B; Yang S; Li L; Cheng F; Chen J
    J Chem Phys; 2010 Jan; 132(3):034305. PubMed ID: 20095737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.
    Marinado T; Hagberg DP; Hedlund M; Edvinsson T; Johansson EM; Boschloo G; Rensmo H; Brinck T; Sun L; Hagfeldt A
    Phys Chem Chem Phys; 2009 Jan; 11(1):133-41. PubMed ID: 19081916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dye sensitization of single crystal semiconductor electrodes.
    Spitler MT; Parkinson BA
    Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study.
    Kusama H; Orita H; Sugihara H
    Langmuir; 2008 Apr; 24(8):4411-9. PubMed ID: 18331067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion efficiency versus sensitizer for electrospun TiO(2) nanorod electrodes in dye-sensitized solar cells.
    Jose R; Kumar A; Thavasi V; Ramakrishna S
    Nanotechnology; 2008 Oct; 19(42):424004. PubMed ID: 21832664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes.
    Miyashita M; Sunahara K; Nishikawa T; Uemura Y; Koumura N; Hara K; Mori A; Abe T; Suzuki E; Mori S
    J Am Chem Soc; 2008 Dec; 130(52):17874-81. PubMed ID: 19067515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triphenylamine-based indoline derivatives for dye-sensitized solar cells: a density functional theory investigation.
    Ren XF; Kang GJ; He QQ
    J Mol Model; 2016 Jan; 22(1):8. PubMed ID: 26659403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigation of triphenylamine dye/titanium dioxide interface for dye-sensitized solar cells.
    Fan W; Tan D; Deng W
    Phys Chem Chem Phys; 2011 Sep; 13(36):16159-67. PubMed ID: 21837323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study.
    Fan W; Tan D; Deng WQ
    Chemphyschem; 2012 Jun; 13(8):2051-60. PubMed ID: 22447680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated experimental and theoretical approach to the spectroscopy of organic-dye-sensitized TiO₂ heterointerfaces: disentangling the effects of aggregation, solvation, and surface protonation.
    Marotta G; Lobello MG; Anselmi C; Barozzino Consiglio G; Calamante M; Mordini A; Pastore M; De Angelis F
    Chemphyschem; 2014 Apr; 15(6):1116-25. PubMed ID: 24402779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers.
    Nazeeruddin MK; De Angelis F; Fantacci S; Selloni A; Viscardi G; Liska P; Ito S; Takeru B; Grätzel M
    J Am Chem Soc; 2005 Dec; 127(48):16835-47. PubMed ID: 16316230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular engineering of organic sensitizers for dye-sensitized solar cell applications.
    Hagberg DP; Yum JH; Lee H; De Angelis F; Marinado T; Karlsson KM; Humphry-Baker R; Sun L; Hagfeldt A; Grätzel M; Nazeeruddin MK
    J Am Chem Soc; 2008 May; 130(19):6259-66. PubMed ID: 18419124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coumarin derivatives for dye sensitized solar cells: a TD-DFT study.
    Sánchez-de-Armas R; San Miguel MÁ; Oviedo J; Sanz JF
    Phys Chem Chem Phys; 2012 Jan; 14(1):225-33. PubMed ID: 22080195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Modeling of Stark Effects in Organic Dye-Sensitized TiO2 Heterointerfaces.
    Pastore M; Angelis FD
    J Phys Chem Lett; 2011 Jun; 2(11):1261-7. PubMed ID: 26295419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2.
    Duncan WR; Craig CF; Prezhdo OV
    J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical investigation of the excited states of coumarin dyes for dye-sensitized solar cells.
    Kurashige Y; Nakajima T; Kurashige S; Hirao K; Nishikitani Y
    J Phys Chem A; 2007 Jun; 111(25):5544-8. PubMed ID: 17539619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.