These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 20021454)
1. The role of transmembrane segment II in 7TM receptor activation. Benned-Jensen T; Rosenkilde MM Curr Mol Pharmacol; 2009 Jun; 2(2):140-8. PubMed ID: 20021454 [TBL] [Abstract][Full Text] [Related]
2. Identification of an efficacy switch region in the ghrelin receptor responsible for interchange between agonism and inverse agonism. Holst B; Mokrosinski J; Lang M; Brandt E; Nygaard R; Frimurer TM; Beck-Sickinger AG; Schwartz TW J Biol Chem; 2007 May; 282(21):15799-811. PubMed ID: 17371869 [TBL] [Abstract][Full Text] [Related]
3. PheVI:09 (Phe6.44) as a sliding microswitch in seven-transmembrane (7TM) G protein-coupled receptor activation. Valentin-Hansen L; Holst B; Frimurer TM; Schwartz TW J Biol Chem; 2012 Dec; 287(52):43516-26. PubMed ID: 23135271 [TBL] [Abstract][Full Text] [Related]
4. The minor binding pocket: a major player in 7TM receptor activation. Rosenkilde MM; Benned-Jensen T; Frimurer TM; Schwartz TW Trends Pharmacol Sci; 2010 Dec; 31(12):567-74. PubMed ID: 20870300 [TBL] [Abstract][Full Text] [Related]
5. 7TM Domain Structure of Adhesion GPCRs. de Graaf C; Nijmeijer S; Wolf S; Ernst OP Handb Exp Pharmacol; 2016; 234():43-66. PubMed ID: 27832483 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanism of 7TM receptor activation--a global toggle switch model. Schwartz TW; Frimurer TM; Holst B; Rosenkilde MM; Elling CE Annu Rev Pharmacol Toxicol; 2006; 46():481-519. PubMed ID: 16402913 [TBL] [Abstract][Full Text] [Related]
7. Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation. Elling CE; Frimurer TM; Gerlach LO; Jorgensen R; Holst B; Schwartz TW J Biol Chem; 2006 Jun; 281(25):17337-17346. PubMed ID: 16567806 [TBL] [Abstract][Full Text] [Related]
9. Conserved water-mediated hydrogen bond network between TM-I, -II, -VI, and -VII in 7TM receptor activation. Nygaard R; Valentin-Hansen L; Mokrosinski J; Frimurer TM; Schwartz TW J Biol Chem; 2010 Jun; 285(25):19625-36. PubMed ID: 20395291 [TBL] [Abstract][Full Text] [Related]
10. Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor. Holst B; Lang M; Brandt E; Bach A; Howard A; Frimurer TM; Beck-Sickinger A; Schwartz TW Mol Pharmacol; 2006 Sep; 70(3):936-46. PubMed ID: 16798937 [TBL] [Abstract][Full Text] [Related]
11. Structural motifs of importance for the constitutive activity of the orphan 7TM receptor EBI2: analysis of receptor activation in the absence of an agonist. Benned-Jensen T; Rosenkilde MM Mol Pharmacol; 2008 Oct; 74(4):1008-21. PubMed ID: 18628402 [TBL] [Abstract][Full Text] [Related]
12. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
13. Structure-function relationships of the human bitter taste receptor hTAS2R1: insights from molecular modeling studies. Dai W; You Z; Zhou H; Zhang J; Hu Y J Recept Signal Transduct Res; 2011 Jun; 31(3):229-40. PubMed ID: 21619450 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2 (GPR183). Benned-Jensen T; Norn C; Laurent S; Madsen CM; Larsen HM; Arfelt KN; Wolf RM; Frimurer T; Sailer AW; Rosenkilde MM J Biol Chem; 2012 Oct; 287(42):35470-35483. PubMed ID: 22875855 [TBL] [Abstract][Full Text] [Related]
15. An angiotensin II type 1 receptor activation switch patch revealed through evolutionary trace analysis. Bonde MM; Yao R; Ma JN; Madabushi S; Haunsø S; Burstein ES; Whistler JL; Sheikh SP; Lichtarge O; Hansen JL Biochem Pharmacol; 2010 Jul; 80(1):86-94. PubMed ID: 20227396 [TBL] [Abstract][Full Text] [Related]
16. The third extracellular loop of G-protein-coupled receptors: more than just a linker between two important transmembrane helices. Lawson Z; Wheatley M Biochem Soc Trans; 2004 Dec; 32(Pt 6):1048-50. PubMed ID: 15506960 [TBL] [Abstract][Full Text] [Related]
17. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps. Thiele S; Rosenkilde MM Curr Med Chem; 2014; 21(31):3594-614. PubMed ID: 25039782 [TBL] [Abstract][Full Text] [Related]
18. A G protein-coupled receptor at work: the rhodopsin model. Hofmann KP; Scheerer P; Hildebrand PW; Choe HW; Park JH; Heck M; Ernst OP Trends Biochem Sci; 2009 Nov; 34(11):540-52. PubMed ID: 19836958 [TBL] [Abstract][Full Text] [Related]
19. Conserved residues in RF-NH₂ receptor models identify predicted contact sites in ligand-receptor binding. Bass C; Katanski C; Maynard B; Zurro I; Mariane E; Matta M; Loi M; Melis V; Capponi V; Muroni P; Setzu M; Nichols R Peptides; 2014 Mar; 53():278-85. PubMed ID: 23811075 [TBL] [Abstract][Full Text] [Related]
20. Family C 7TM receptor dimerization and activation. Bonde MM; Sheikh SP; Hansen JL Endocr Metab Immune Disord Drug Targets; 2006 Mar; 6(1):7-16. PubMed ID: 16611160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]