BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2002176)

  • 1. Observation of perturbations in a lumped-element model of the vocal folds with application to some pathological cases.
    Wong D; Ito MR; Cox NB; Titze IR
    J Acoust Soc Am; 1991 Jan; 89(1):383-94. PubMed ID: 2002176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M; Galindo GE; Erath BD; Peterson SD; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of vocal disorders with methods from nonlinear dynamics.
    Herzel H; Berry D; Titze IR; Saleh M
    J Speech Hear Res; 1994 Oct; 37(5):1008-19. PubMed ID: 7823547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deviant vocal fold vibration as observed during videokymography: the effect on voice quality.
    Verdonck-de Leeuw IM; Festen JM; Mahieu HF
    J Voice; 2001 Sep; 15(3):313-22. PubMed ID: 11575628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration parameter extraction from endoscopic image series of the vocal folds.
    Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voice simulation with a body-cover model of the vocal folds.
    Story BH; Titze IR
    J Acoust Soc Am; 1995 Feb; 97(2):1249-60. PubMed ID: 7876446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments.
    Tokuda IT; Horácek J; Svec JG; Herzel H
    J Acoust Soc Am; 2007 Jul; 122(1):519-31. PubMed ID: 17614509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibratory Characteristics of Diplophonia Studied by High Speed Video and Vibrogram Analysis.
    Woo P
    J Voice; 2019 Jan; 33(1):7-15. PubMed ID: 30389188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Diagnosis of functional voice disorders by using the high speed recording technics].
    Braunschweig T; Schelhorn-Neise P; Döllinger M
    Laryngorhinootologie; 2008 May; 87(5):323-30. PubMed ID: 18050022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Evaluation of laryngeal sound generation with FFT analysis of glottic impedance in patients with recurrent nerve paralysis].
    Ptok M; Sesterhenn G; Arold R
    Folia Phoniatr (Basel); 1993; 45(4):182-97. PubMed ID: 8406268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying vocal fold vibrations in Parkinson's disease with a nonlinear model.
    Zhang Y; Jiang J; Rahn DA
    Chaos; 2005 Sep; 15(3):33903. PubMed ID: 16252994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventricular fold vibration in voice production: a high-speed imaging study with kymographic, acoustic and perceptual analyses of a voice patient and a vocally healthy subject.
    Lindestad PA; Blixt V; Pahlberg-Olsson J; Hammarberg B
    Logoped Phoniatr Vocol; 2004; 29(4):162-70. PubMed ID: 15764210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of nodules through the high-resolution frequency analyzer.
    Remacle M; Trigaux I
    Folia Phoniatr (Basel); 1991; 43(2):53-9. PubMed ID: 1916548
    [No Abstract]   [Full Text] [Related]  

  • 16. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voice Signals Produced With Jitter Through a Stochastic One-mass Mechanical Model.
    Cataldo E; Soize C
    J Voice; 2017 Jan; 31(1):111.e9-111.e18. PubMed ID: 26898394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis of nonuniform signals exemplified by vibration of vocal cords].
    Braunschweig T; Griessbach G; Hanson J; Schelhorn-Neise P
    Biomed Tech (Berl); 1998; 43 Suppl 3():77-81. PubMed ID: 11776228
    [No Abstract]   [Full Text] [Related]  

  • 19. Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model.
    Devine EE; Hoffman MR; McCulloch TM; Jiang JJ
    Laryngoscope; 2017 Feb; 127(2):396-404. PubMed ID: 27223665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaos in voice, from modeling to measurement.
    Jiang JJ; Zhang Y; McGilligan C
    J Voice; 2006 Mar; 20(1):2-17. PubMed ID: 15964740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.