These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20021998)

  • 21. Visual properties of an object affect time to target in VR reaching tasks.
    Powell V; Stevens B; Hand S; Simmonds M
    Stud Health Technol Inform; 2010; 154():180-4. PubMed ID: 20543294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The perception of spatial layout in real and virtual worlds.
    Arthur EJ; Hancock PA; Chrysler ST
    Ergonomics; 1997 Jan; 40(1):69-77. PubMed ID: 8995048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Just seeing you makes me feel better: interpersonal enhancement of touch.
    Haggard P
    Soc Neurosci; 2006; 1(2):104-10. PubMed ID: 18633779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Virtual arm's reach influences perceived distances but only after experience reaching.
    Linkenauger SA; Bülthoff HH; Mohler BJ
    Neuropsychologia; 2015 Apr; 70():393-401. PubMed ID: 25446965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural perspective projections for head-mounted displays.
    Steinicke F; Bruder G; Kuhl S; Willemsen P; Lappe M; Hinrichs KH
    IEEE Trans Vis Comput Graph; 2011 Jul; 17(7):888-99. PubMed ID: 21546652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of two types of virtual reality on voluntary center of pressure displacement.
    Lott A; Bisson E; Lajoie Y; McComas J; Sveistrup H
    Cyberpsychol Behav; 2003 Oct; 6(5):477-85. PubMed ID: 14583123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effects of field viewing angles on object judgement [correction of jubgerent] in virtual environment].
    Zhou QX; Jiang GH; Qu ZS; Zhu YJ
    Space Med Med Eng (Beijing); 2003 Aug; 16(4):292-5. PubMed ID: 14594040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.
    Macaluso T; Bourdin C; Buloup F; Mille ML; Sainton P; Sarlegna FR; Taillebot V; Vercher JL; Weiss P; Bringoux L
    Neuroscience; 2016 Jul; 327():125-35. PubMed ID: 27095713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of pain threshold by virtual body ownership.
    Martini M; Perez-Marcos D; Sanchez-Vives MV
    Eur J Pain; 2014 Aug; 18(7):1040-8. PubMed ID: 24449513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Real-World Versus Virtual Environments on Joint Excursions in Full-Body Reaching Tasks.
    Thomas JS; France CR; Leitkam ST; Applegate ME; Pidcoe PE; Walkowski S
    IEEE J Transl Eng Health Med; 2016; 4():2100608. PubMed ID: 27957404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of the Perspectives on the Movement of One-Leg Lifting in an Interactive-Visual Virtual Environment: A Pilot Study.
    Huang CH; Pei C; Sun TL
    PLoS One; 2016; 11(9):e0163247. PubMed ID: 27649536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.
    Roosink M; Robitaille N; McFadyen BJ; Hébert LJ; Jackson PL; Bouyer LJ; Mercier C
    J Neuroeng Rehabil; 2015 Jan; 12(1):2. PubMed ID: 25558785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drumming in immersive virtual reality: the body shapes the way we play.
    Kilteni K; Bergstrom I; Slater M
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):597-605. PubMed ID: 23428444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of haptic exploration of ground surface information in perception of overhead reachability.
    Pepping GJ; Li FX
    J Mot Behav; 2008 Nov; 40(6):491-8. PubMed ID: 18980903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI.
    Ustinova KI; Leonard WA; Cassavaugh ND; Ingersoll CD
    J Neuroeng Rehabil; 2011 Oct; 8():61. PubMed ID: 22040301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Do children perceive postural constraints when estimating reach or action planning?
    Gabbard C; Cordova A; Lee S
    J Mot Behav; 2009 Mar; 41(2):100-5. PubMed ID: 19201680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Back to reality: differences in learning strategy in a simplified virtual and a real throwing task.
    Zhang Z; Sternad D
    J Neurophysiol; 2021 Jan; 125(1):43-62. PubMed ID: 33146063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinematic Validity of Reaching in a 2D Virtual Environment for Arm Rehabilitation After Stroke.
    Demers M; Levin MF
    IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):679-686. PubMed ID: 32031942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Eyetracking for two-person tasks with manipulation of a virtual world.
    Carletta J; Hill RL; Nicol C; Taylor T; de Ruiter JP; Bard EG
    Behav Res Methods; 2010 Feb; 42(1):254-65. PubMed ID: 20160304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constancy of Preparatory Postural Adjustments for Reaching to Virtual Targets across Different Postural Configurations.
    Stamenkovic A; Hollands MA; Stapley PJ
    Neuroscience; 2021 Feb; 455():223-239. PubMed ID: 33246066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.