These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20022400)

  • 1. Representation of bone heterogeneity in subject-specific finite element models for knee.
    Au AG; Liggins AB; Raso VJ; Carey J; Amirfazli A
    Comput Methods Programs Biomed; 2010 Aug; 99(2):154-71. PubMed ID: 20022400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material properties assignment to finite element models of bone structures: a new method.
    Zannoni C; Mantovani R; Viceconti M
    Med Eng Phys; 1998 Dec; 20(10):735-40. PubMed ID: 10223642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
    Gardiner JC; Weiss JA
    J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach for assigning bone material properties from CT images into finite element models.
    Chen G; Schmutz B; Epari D; Rathnayaka K; Ibrahim S; Schuetz MA; Pearcy MJ
    J Biomech; 2010 Mar; 43(5):1011-5. PubMed ID: 19942221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of an architecture-specific experimental validation approach for finite element modeling of bone by rapid prototyping and high resolution computed tomography.
    Su R; Campbell GM; Boyd SK
    Med Eng Phys; 2007 May; 29(4):480-90. PubMed ID: 16908211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models.
    Chen G; Wu FY; Liu ZC; Yang K; Cui F
    Med Eng Phys; 2015 Aug; 37(8):808-12. PubMed ID: 26054803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements.
    Taddei F; Schileo E; Helgason B; Cristofolini L; Viceconti M
    Med Eng Phys; 2007 Nov; 29(9):973-9. PubMed ID: 17169598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved method for the automatic mapping of computed tomography numbers onto finite element models.
    Taddei F; Pancanti A; Viceconti M
    Med Eng Phys; 2004 Jan; 26(1):61-9. PubMed ID: 14644599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech Eng; 2008 Oct; 130(5):051010. PubMed ID: 19045517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones.
    Eberle S; Göttlinger M; Augat P
    Med Eng Phys; 2013 Jul; 35(7):875-83. PubMed ID: 23010570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of multiple subject-specific finite element models of unicompartmental knee replacement.
    Tuncer M; Cobb JP; Hansen UN; Amis AA
    Med Eng Phys; 2013 Oct; 35(10):1457-64. PubMed ID: 23647863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra.
    Unnikrishnan GU; Morgan EF
    J Biomech Eng; 2011 Jul; 133(7):071001. PubMed ID: 21823740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of subject-specific automated p-FE analysis of the proximal femur.
    Trabelsi N; Yosibash Z; Milgrom C
    J Biomech; 2009 Feb; 42(3):234-41. PubMed ID: 19118831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated three-dimensional finite element modelling of bone: a new method.
    Keyak JH; Meagher JM; Skinner HB; Mote CD
    J Biomed Eng; 1990 Sep; 12(5):389-97. PubMed ID: 2214726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer aided stress analysis of long bones utilizing computed tomography.
    Marom SA; Linden MJ
    J Biomech; 1990; 23(5):399-404. PubMed ID: 2373712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Simulation of the rat tibial bone density changes with the finite element method].
    An MY; Ma AJ; Li YH; Wan YM
    Space Med Med Eng (Beijing); 2005 Feb; 18(1):55-7. PubMed ID: 15852552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.