These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 20022545)
1. Power ultrasonic transducers with extensive radiators for industrial processing. Gallego-Juárez JA; Rodriguez G; Acosta V; Riera E Ultrason Sonochem; 2010 Aug; 17(6):953-64. PubMed ID: 20022545 [TBL] [Abstract][Full Text] [Related]
2. Ultrasonic system for continuous washing of textiles in liquid layers. Gallego-Juarez JA; Riera E; Acosta V; Rodríguez G; Blanco A Ultrason Sonochem; 2010 Jan; 17(1):234-8. PubMed ID: 19574081 [TBL] [Abstract][Full Text] [Related]
3. Food drying process by power ultrasound. de la Fuente-Blanco S; Riera-Franco de Sarabia E; Acosta-Aparicio VM; Blanco-Blanco A; Gallego-Juárez JA Ultrasonics; 2006 Dec; 44 Suppl 1():e523-7. PubMed ID: 16814827 [TBL] [Abstract][Full Text] [Related]
4. A procedure for the efficient selection of piezoelectric ceramics constituting high-power ultrasonic transducers. Chacón D; Rodríguez-Corral G; Gaete-Garretón L; Riera-Franco de Sarabia E; Gallego-Juárez JA Ultrasonics; 2006 Dec; 44 Suppl 1():e517-21. PubMed ID: 16797649 [TBL] [Abstract][Full Text] [Related]
5. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
6. High power ultrasonics as a novel tool offering new opportunities for managing wine microbiology. Jiranek V; Grbin P; Yap A; Barnes M; Bates D Biotechnol Lett; 2008 Jan; 30(1):1-6. PubMed ID: 17805976 [TBL] [Abstract][Full Text] [Related]
7. Matching a transducer to water at cavitation: acoustic horn design principles. Peshkovsky SL; Peshkovsky AS Ultrason Sonochem; 2007 Mar; 14(3):314-22. PubMed ID: 16905351 [TBL] [Abstract][Full Text] [Related]
8. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
9. Optimization design of high power ultrasonic circular ring radiator in coupled vibration. Xu L; Lin S; Hu W Ultrasonics; 2011 Oct; 51(7):815-23. PubMed ID: 21529873 [TBL] [Abstract][Full Text] [Related]
10. Energetic balance in an ultrasonic reactor using focused or flat high frequency transducers. Hallez L; Touyeras F; Hihn JY; Klima J Ultrason Sonochem; 2007 Sep; 14(6):739-49. PubMed ID: 17347018 [TBL] [Abstract][Full Text] [Related]
11. Loss effects on adhesively-bonded multilayer ultrasonic transducers by self-heating. Wu Z; Cochran S Ultrasonics; 2010 Apr; 50(4-5):508-11. PubMed ID: 19942247 [TBL] [Abstract][Full Text] [Related]
12. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
13. Modal analysis and nonlinear characterization of an airborne power ultrasonic transducer with rectangular plate radiator. Andrés RR; Acosta VM; Lucas M; Riera E Ultrasonics; 2018 Jan; 82():345-356. PubMed ID: 28985624 [TBL] [Abstract][Full Text] [Related]
14. Design and characterization of a high-power ultrasound driver with ultralow-output impedance. Lewis GK; Olbricht WL Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748 [TBL] [Abstract][Full Text] [Related]
15. The impact of micromachined ultrasonic radiators on the efficiency of transducers in air. Je Y; Lee H; Moon W Ultrasonics; 2013 Aug; 53(6):1124-34. PubMed ID: 23541961 [TBL] [Abstract][Full Text] [Related]
16. Power ultrasound and its applications: A state-of-the-art review. Yao Y; Pan Y; Liu S Ultrason Sonochem; 2020 Apr; 62():104722. PubMed ID: 31796328 [TBL] [Abstract][Full Text] [Related]
18. Load characteristics of high power sandwich piezoelectric ultrasonic transducers. Shuyu L Ultrasonics; 2005 Mar; 43(5):365-73. PubMed ID: 15737387 [TBL] [Abstract][Full Text] [Related]
19. Ultrasonic transducers working in the air with the continuous wave within the 50-500 kHz frequency range. Gudra T; Opielinski KJ Ultrasonics; 2004 Apr; 42(1-9):453-8. PubMed ID: 15047328 [TBL] [Abstract][Full Text] [Related]
20. Development of a miniaturized piezoelectric ultrasonic transducer. Li T; Chen Y; Ma J IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):649-59. PubMed ID: 19411223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]